Tuning the properties of truxene by successive substitution of nitrogen and sulphur heteroatoms: a DFT insight.

J Mol Model

Department of Chemistry, Faculty of Mathematical and Physical Sciences, M. S. Ramaiah University of Applied Sciences, Bengaluru, 560058, India.

Published: January 2022

In this study, truxene, along with its nitrogen- and sulphur-substituted counterparts were investigated for their properties. The important characteristic properties of a potential conducting material such as HOMO-LUMO gap, electron affinity, ionization potential, and density of states were calculated and compared for analysis. Furthermore, Fukui function and dual descriptor analyses were also carried out, to identify the reactive sites in each of the molecules, as well as understand the effect of substituted heteroatoms. It was seen that the di-substituted candidates were convincingly better fitting for optoelectronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-021-05020-8DOI Listing

Publication Analysis

Top Keywords

tuning properties
4
properties truxene
4
truxene successive
4
successive substitution
4
substitution nitrogen
4
nitrogen sulphur
4
sulphur heteroatoms
4
heteroatoms dft
4
dft insight
4
insight study
4

Similar Publications

Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.

View Article and Find Full Text PDF

Systematic Study of the Synthesis of Monodisperse CsPbI Perovskite Nanoplatelets for Efficient Color-Pure Light Emitting Diodes.

Small

January 2025

Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.

Metal halide perovskite nanoplatelets (NPls) possess ultra-narrow photoluminescence (PL) bands tunable over the entire visible spectral range, which makes them promising for utilization in light-emitting diodes (LEDs) with spectrally pure emission colors. This calls for development of synthetic methods toward perovskite NPls with a high degree of control over both their thickness and lateral dimensions. A general strategy is developed to obtain such monodisperse CsPbI NPls through the control over the halide-to-lead ratio during heating-up reaction.

View Article and Find Full Text PDF

The electrochemical reduction of CO (CORR) to value-added products has garnered significant interest as a sustainable solution to mitigate CO emissions and harness renewable energy sources. Among CORR products, formic acid/formate (HCOOH/HCOO) is particularly attractive due to its industrial relevance, high energy density, and potential candidate as a liquid hydrogen carrier. This study investigates the influence of the initial oxidation state of tin on CORR performance using nanostructured SnO catalysts.

View Article and Find Full Text PDF

Analysis of Refractive Index Sensing Properties of a Hybrid Hollow Cylindrical Tetramer Array.

Nanomaterials (Basel)

January 2025

Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China.

In recent years, metal surface plasmon resonance sensors and dielectric guided-mode resonance sensors have attracted the attention of researchers. Metal sensors are sensitive to environmental disturbances but have high optical losses, while dielectric sensors have low losses but limited sensitivity. To overcome these limitations, hybrid resonance sensors that combine the advantages of metal and dielectric were proposed to achieve a high sensitivity and a high factor at the same time.

View Article and Find Full Text PDF

Raman and Photoluminescence Studies of Quasiparticles in van der Waals Materials.

Nanomaterials (Basel)

January 2025

Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China.

Two-dimensional (2D) layered materials have received much attention due to the unique properties stemming from their van der Waals (vdW) interactions, quantum confinement, and many-body interactions of quasi-particles, which drive their exotic optical and electronic properties, making them critical in many applications. Here, we review our past years' findings, focusing on many-body interactions in 2D layered materials, including phonon anharmonicity, electron-phonon coupling (), exciton dynamics, and phonon anisotropy based on temperature (polarization)-dependent Raman spectroscopy and Photoluminescence (PL). Our review sheds light on the role of quasi-particles in tuning the material properties, which could help optimize 2D materials for future applications in electronic and optoelectronic devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!