Extensive Brain Pathologic Alterations Detected with 7.0-T MR Spectroscopic Imaging Associated with Disability in Multiple Sclerosis.

Radiology

From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.).

Published: April 2022

Background MR spectroscopic imaging (MRSI) allows in vivo assessment of brain metabolism and is of special interest in multiple sclerosis (MS), where morphologic MRI cannot depict major parts of disease activity. Purpose To evaluate the ability of 7.0-T MRSI to depict and visualize pathologic alterations in the normal-appearing white matter (NAWM) and cortical gray matter (CGM) in participants with MS and to investigate their relation to disability. Materials and Methods Free-induction decay MRSI was performed at 7.0 T. Participants with MS and age- and sex-matched healthy controls were recruited prospectively between January 2016 and December 2017. Metabolic ratios were obtained in white matter lesions, NAWM, and CGM regions. Subgroup analysis for MS-related disability based on Expanded Disability Status Scale (EDSS) scores was performed using analysis of covariance. Partial correlations were applied to explore associations between metabolic ratios and disability. Results Sixty-five participants with MS (mean age ± standard deviation, 34 years ± 9; 34 women) and 20 age- and sex-matched healthy controls (mean age, 32 years ± 7; 11 women) were evaluated. Higher signal intensity of myo-inositol (mI) with and without reduced signal intensity of -acetylaspartate (NAA) was visible on metabolic images in the NAWM of participants with MS. A higher ratio of mI to total creatine (tCr) was observed in the NAWM of the centrum semiovale of all MS subgroups, including participants without disability (marginal mean ± standard error, healthy controls: 0.78 ± 0.04; EDSS 0-1: 0.86 ± 0.03 [ = .02]; EDSS 1.5-3: 0.95 ± 0.04 [ < .001]; EDSS ≥3.5: 0.94 ± 0.04 [ = .001]). A lower ratio of NAA to tCr was found in MS subgroups with disabilities, both in their NAWM (marginal mean ± standard error, healthy controls: 1.46 ± 0.04; EDSS 1.5-3: 1.33 ± 0.03 [ = .03]; EDSS ≥3.5: 1.30 ± 0.04 [ = .01]) and CGM (marginal mean ± standard error, healthy controls: 1.42 ± 0.05; EDSS ≥3.5: 1.23 ± 0.05 [ = .006]). mI/NAA correlated with EDSS (NAWM of centrum semiovale: = 0.47, < .001; parietal NAWM: = 0.43, = .002; frontal NAWM: = 0.34, = .01; frontal CGM: = 0.37, = .004). Conclusion MR spectroscopic imaging at 7.0 T allowed in vivo visualization of multiple sclerosis pathologic findings not visible at T1- or T2-weighted MRI. Metabolic abnormalities in the normal-appearing white matter and cortical gray matter were associated with disability. © RSNA, 2022 See also the editorial by Barker in this issue.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.210614DOI Listing

Publication Analysis

Top Keywords

healthy controls
20
spectroscopic imaging
12
multiple sclerosis
12
white matter
12
marginal standard
12
standard error
12
error healthy
12
edss ≥35
12
pathologic alterations
8
associated disability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!