The human brain functional lateralization has been widely studied over the past decades, and neuroimaging studies have shown how activation of motor areas during hand movement execution (ME) is different according to hand dominance. Nevertheless, there is no research directly investigating the effects of the participant's handedness in a motor imagery (MI) and ME task in both right and left-handed individuals at the cortical and subcortical level. Twenty-six right-handed and 25 left-handed participants were studied using functional magnetic resonance imaging during the imagination and execution of repetitive self-paced movements of squeezing a ball with their dominant, non-dominant, and both hands. Results revealed significant statistical difference (p < 0.05) between groups during both the execution and the imagery task with the dominant, non-dominant, and both hands both at cortical and subcortical level. During ME, left-handers recruited a spread bilateral network, while in right-handers, activity was more lateralized. At the critical level, MI between-group analysis revealed a similar pattern in right and left-handers showing a bilateral activation for the dominant hand. Differentially at the subcortical level, during MI, only right-handers showed the involvement of the posterior cerebellum. No significant activity was found for left-handers. Overall, we showed a partial spatial overlap of neural correlates of MI and ME in motor, premotor, sensory cortices, and cerebellum. Our results highlight differences in the functional organization of motor areas in right and left-handed people, supporting the hypothesis that MI is influenced by the way people habitually perform motor actions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303560 | PMC |
http://dx.doi.org/10.1002/jnr.25003 | DOI Listing |
Sensors (Basel)
December 2024
Instituto de Automática e Informática Industrial, Universitat Politècnica de València, 46022 Valencia, Spain.
In this paper, a bibliometric review is conducted on brain-computer interfaces (BCI) in non-invasive paradigms like motor imagery (MI) and steady-state visually evoked potentials (SSVEP) for applications in rehabilitation and robotics. An exploratory and descriptive approach is used in the analysis. Computational tools such as the biblioshiny application for R-Bibliometrix and VOSViewer are employed to generate data on years, sources, authors, affiliation, country, documents, co-author, co-citation, and co-occurrence.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electronics and Communication Engineering, Istanbul Technical University, 34467 Istanbul, Istanbul, Turkey.
Classifying Motor Imaging (MI) Electroencephalogram (EEG) signals is of vital importance for Brain-Computer Interface (BCI) systems, but challenges remain. A key challenge is to reduce the number of channels to improve flexibility, portability, and computational efficiency, especially in multi-class scenarios where more channels are needed for accurate classification. This study demonstrates that combining Electrooculogram (EOG) channels with a reduced set of EEG channels is more effective than relying on a large number of EEG channels alone.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.
Background: Motor imagery is the mental representation of a movement without physical execution. When motor imagery is performed to enhance motor learning and performance, participants must reach a temporal congruence between the imagined and actual movement execution. Identifying factors that can influence this capacity could enhance the effectiveness of motor imagery programs.
View Article and Find Full Text PDFBrain Behav
January 2025
School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.
Background: Different modes of motor acquisition, including motor execution (ME), motor imagery (MI), action observation (AO), and mirror visual feedback (MVF), are often used when learning new motor behavior and in clinical rehabilitation.
Purpose: The aim of this study was to investigate differences in brain activation during different motor acquisition modes among healthy young adults.
Methods: This cross-sectional study recruited 29 healthy young adults.
Front Neurol
December 2024
Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel.
Children with attention deficit hyperactivity disorder (ADHD) exhibit various degrees of motor and cognitive impairments in fine and gross motor skills. These impairments impact social functioning, while also hindering academic achievement, self-esteem, and participation. Specifically, motor impairments are not fully addressed by current therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!