Osteoarthritis (OA) is a common progressively degenerative joint disease that affects more than 300 million people worldwide. OA is manifested by articular cartilage degradation, chronic pain, deformity, functional disability, and decreased quality of life. A real challenge in OA management is the lack of an effective cure because exiting therapeutics often provide symptom control rather than disease modification; therefore, they fail to prevent disease progression. The inadequate treatments for OA management have encouraged researchers to study mesenchymal stem cells (MSCs) as an investigational treatment for OA. MSCs are a promising tool for OA because of their availability; expand cultivation and multi-lineage differentiation capacity as well as well-documented paracrine function have made MSCs a promising tool in this field. Accordingly, MSCs application has been successfully utilized in a broad range of pre-clinical OA animal models as well as clinical studies with the aim of cartilage repair which had not previously been achieved using classical treatments. Here, the brief scientific review of MSC role in the control of OA as well as the proposed mechanisms are discussed. We provide an insight into the last 10 years' studies conducted on preclinical and clinical OA treatment as well as future opportunities in OA management strategies employing MSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/5584_2021_695 | DOI Listing |
J Dev Biol
December 2024
Department of Neuroscience, Biomedicine and Movement-Sec. Anatomy and Histology, University of Verona, Via Le Grazie 8, 37134 Verona, Italy.
Since its first conceptualization over a century ago, the mesenchymal phenotype has traditionally been viewed as either a transient phase between successive epithelial stages or as a feature of cell types primarily devoted to structural support. However, recent findings in cancer research challenge this limited view, demonstrating that mesenchymal traits and hybrid mesenchymal/epithelial states can mark cancer cells with stem cell properties. By analyzing publicly available single-cell transcriptome datasets from early embryonic stages and adult tissues, this study aims to extend this concept beyond pathological contexts, suggesting that a partial or fully mesenchymal phenotype may represent the morphological expression of undifferentiated and multipotent states in both the developing embryo and adult organs.
View Article and Find Full Text PDFOral Dis
January 2025
Bahrain Defence Force Royal Medical Services, Riffa, Bahrain.
Objective: Tumour-associated macrophages (TAMs) are crucial in the progression and treatment response of oral squamous cell carcinoma (OSCC). TAMs infiltrate OSCC, adopting an M2-like phenotype that promotes tumour growth, metastasis and immune suppression. The current narrative review explored the roles of TAMs in OSCC, focusing on their impact on the tumour microenvironment, invasion, metastasis, angiogenesis, immunosuppression and potential therapeutic targeting.
View Article and Find Full Text PDFZool Res
January 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.
Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China.
Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.
View Article and Find Full Text PDFJ Stem Cells Regen Med
October 2024
Mansoura University, Faculty of Science, Zoology department, Mansoura, Dakahlia, Egypt.
In recent years, bone marrow derived mesenchymal stem cells (BM-derived MSCs) have emerged as a powerful cell-based therapy for various diseases, including male infertility. Demonstrating the efficiency of BM-derived MSCs transplantation by different routes of injection to home and repair testis of busulfan-induced azoospermic rats. In the present study, rat BM-derived MSC was isolated and characterized for mesenchymal &hematopoietic markers using flow-cytometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!