A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly efficient catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using bimetallic Pt-Cu alloy nanoparticles as catalysts. | LitMetric

Bimetallic platinum-copper alloy nanoparticles are highly active catalysts for the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) under base-free conditions, with a high turnover frequency of up to 135 h in aqueous solution. The Pt-Cu/AC alloyed catalyst promoted the rate-determining step in the tandem oxidation compared with the monometallic Pt/AC catalyst, thus improving the catalytic performance.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cc05757jDOI Listing

Publication Analysis

Top Keywords

oxidation 5-hydroxymethylfurfural
8
25-furandicarboxylic acid
8
alloy nanoparticles
8
highly efficient
4
efficient catalytic
4
catalytic oxidation
4
5-hydroxymethylfurfural 25-furandicarboxylic
4
acid bimetallic
4
bimetallic pt-cu
4
pt-cu alloy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!