This study assessed the effect of a primer containing 10-methacryloyloxydecyl-(2-thiohydantoin-4-yl)propionate (MDTHP) on the bonding of noble metal alloys to an acrylic resin. Three noble metal alloys were selected as adherends, and V-Primer containing 6-(4-vinylbenzyl-n-propyl)amino-1,3,5-triazine-2,4-dithione was used as a comparative control. The disk specimens of each noble metal alloy were wet-ground and divided into three conditions: specimens primed with MDTHP primer or V-Primer, and specimens without priming. An acrylic resin was bonded to each specimen, and the specimens were performed the shear bond test. The MDTHP primer showed higher shear bond strength than the V-Primer for all specimens. X-ray photoelectron spectroscopic analysis showed that MDTHP was adsorbed on the Au-Pt-Pd alloy surface even after acetone cleaning. MDTHP binds not only with Cu but also with Au and Ag, promoting the bond strength of noble metal alloys. The effectiveness of MDTHP on dental noble metal alloys was suggested.

Download full-text PDF

Source
http://dx.doi.org/10.4012/dmj.2021-181DOI Listing

Publication Analysis

Top Keywords

noble metal
24
metal alloys
20
acrylic resin
8
mdthp primer
8
v-primer specimens
8
shear bond
8
bond strength
8
noble
6
metal
6
mdthp
6

Similar Publications

A novel series of D-A-D-type 9-phenyl-9-phosphafluorene oxide (PhFlOP) derivatives was prepared and is reported herein. The synthetic protocol involved 5 steps from commercially available 2-bromo-4-fluoro-1-nitrobenzene, featuring a noble-metal-free system, mild reaction conditions, and a good yield, especially for the final CsCO-facilitated nucleophilic substitution (77-91% yield). The characterization data obtained from IR and NMR spectroscopy (H, C, F, and P) as well as HRMS spectrometry were in full agreement with the expected structures, and single-crystal X-ray diffraction analysis was conducted to confirm the structure of compound .

View Article and Find Full Text PDF

Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.

Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.

View Article and Find Full Text PDF

Termination-acidity tailoring of molybdenum carbides for alkaline hydrogen evolution reaction.

Nat Commun

January 2025

i-lab, Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.

Transition-metal carbides have been advocated as the promising alternatives to noble-metal platinum-based catalysts in electrocatalytic hydrogen evolution reaction over half a century. However, the effectiveness of transition-metal carbides catalyzing hydrogen evolution in high-pH electrolyte is severely compromised due to the lowered proton activity and intractable alkaline-leaching issue of transition-metal centers. Herein, on the basis of validation of molybdenum-carbide model-catalyst system by taking advantage of surface science techniques, MoC micro-size spheres terminated by Al doped MoO layer exhibit a notable performance of alkaline hydrogen evolution with a near-zero onset-potential, a low overpotential (40 mV) at a typical current density of 10 mA/cm, and a small Tafel slope (45 mV/dec), as well as a long-term stability for continuous hydrogen production over 200 h.

View Article and Find Full Text PDF

Catalytic reduction of nitrate to dinitrogen (N) by noble metals stands as a feasible and promising manner to address the biological and environmental issues associated with nitrate pollution; however, nitrate reduction under single noble-metal catalyzation remains substantially stuck because of the low adsorption enthalpy of noble metal toward nitrate. Tailoring the formation (crystal structure and particle size) of catalytical metal particles, coupled with a more direct electron donating pattern, provides a potential solution for the main challenge in reduction efficiency and selectivity. In this study, we assembled a Pd-based nanocomposite (Pda@EC) by subtly regulating the embedded Pd nanoparticles inside a porous substrate self-sufficient in electron donator (i.

View Article and Find Full Text PDF

The coffee-ring effect, involving spontaneous solute separation, has demonstrated promising potential in the context of patient serum analysis. In this study, an approach leveraging the coffee-ring-based analyte redistribution was developed for spectral analysis of surface-enhanced Raman scattering (SERS). By performing radical SERS scanning through the coffee-ring area and sampling across the coffee ring, complicated chemical information was spatially gathered for further spectra analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!