AI Article Synopsis

  • Food flavors are volatile and sensitive to factors like pH and temperature, needing protection for longer shelf life.
  • Encapsulation enhances the stability and bioavailability of these flavors while allowing for controlled release in food products.
  • The review covers various encapsulation techniques, including electrospinning, cyclodextrin complexes, and yeast cell micro-carriers, while discussing the importance of controlled flavor release and emerging methods.

Article Abstract

Food flavors are volatile compounds that impact the human sensory perception profoundly and find extensive applications in various food products. Because of their volatility and high sensitivity to pH, temperature, oxidation, and external conditions, they require adequate protection to last for a longer duration. Encapsulation plays a critical role in preserving food flavors by enhancing their thermal and oxidative stability, overcoming volatility limitations, and regulating their rapid release with improved bioavailability in food products. The current review focuses on the recent developments in food flavor encapsulation techniques, such as electrospinning/spraying, cyclodextrin inclusion complexes, coacervation, and yeast cell micro-carriers. The review also comprehensively discusses the role of encapsulants in achieving controlled flavor release, the mechanisms involved, and the mathematical modelling for flavor release. Specific well-established nanoencapsulation techniques render better encapsulation efficiency and controlled release of flavor compounds. The review examined specific emerging methods for flavor encapsulation, such as yeast cell encapsulation, which require further exploration and development. This article provides readers with up-to-date information on different encapsulation processes and coating methods used for flavor encapsulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2021.110879DOI Listing

Publication Analysis

Top Keywords

flavor encapsulation
16
encapsulation
9
encapsulation techniques
8
mathematical modelling
8
food flavors
8
food products
8
yeast cell
8
flavor release
8
methods flavor
8
flavor
7

Similar Publications

MOF-derived intelligent arenobufagin nanocomposites with glucose metabolism inhibition for enhanced bioenergetic therapy and integrated photothermal-chemodynamic-chemotherapy.

J Nanobiotechnology

January 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.

Bioenergetic therapy based on tumor glucose metabolism is emerging as a promising therapeutic modality. To overcome the poor bioavailability and toxicity of arenobufagin (ArBu), a MOF-derived intelligent nanosystem, ZIAMH, was designed to facilitate energy deprivation by simultaneous interventions of glycolysis, OXPHOS and TCA cycle. Herein, zeolitic imidazolate framework-8 was loaded with ArBu and indocyanine green, encapsulated within metal-phenolic networks for chemodynamic therapy and hyaluronic acid modification for tumor targeting.

View Article and Find Full Text PDF

The study highlights the impact of different carbohydrate-based wall materials on the encapsulation and release of flavors and physicochemical characteristics of spray-dried oleoresin blends. The inlet temperature and the wall material type significantly affected the spray drying yield, and Hi-Cap 100, at 150 °C, produced the highest yield. All the wall materials had high water solubility, and Hi-Cap 100 reported the best wettability.

View Article and Find Full Text PDF

Construction and controlled flavor release of high internal phase emulsion stabilized by pH-driven-assembled soy peptide nanoparticles.

Food Chem

January 2025

College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. Electronic address:

This study aimed to evaluate the potential of pH-driven assembled soy peptide nanoparticle (SPN) to prepare high internal phase emulsions (HIPEs) containing sweet orange essential oil (SOEO), and the effects of SPN concentration and oil phase fraction on the formation, stability and flavor release characteristics were investigated. Results showed that stable HIPEs with excellent self-supporting state were successfully fabricated at relative high SPN concentrations (0.5-3.

View Article and Find Full Text PDF

Regeneration of diabetic bone defects remains a formidable challenge due to the chronic hyperglycemic state, which triggers the accumulation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To address this issue, we have engineered a bimetallic metal-organic framework-derived Mn@CoO@Pt nanoenzyme loaded with alendronate and Mg ions (termed MCPtA) to regulate the hyperglycemic microenvironment and recover the osteogenesis/osteoclast homeostasis. Notably, the Mn atom substitution in the CoO nanocrystalline structure could modulate the electronic structure and significantly improve the SOD/CAT catalytic activity for ROS scavenging.

View Article and Find Full Text PDF

Frying is one of the oldest cooking methods, widely used to prepare crispy and flavorful foods. However, a significant concern with fried foods is the high amount of oil absorption. The application of edible coatings is a common approach to reducing oil absorption in fried potatoes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!