Deep learning based cervical screening by the cross-modal integration of colposcopy, cytology, and HPV test.

Int J Med Inform

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China; Jinan Guoke Medical Engineering and Technology Development Co., Ltd, Pharmaceutical Valley New Drug Creation Platform, Jinan, Shandong 250109, China. Electronic address:

Published: March 2022

AI Article Synopsis

  • The study aims to create and assess a deep learning model for cervical screening using various types of cervical images from colposcopy, while also exploring how combining colposcopy with cytology and HPV tests can enhance screening efficacy.
  • Involving 2160 women, the research utilized different cervical images obtained through various solutions, building separate deep learning models for each type and then combining them for a more comprehensive approach.
  • The results showed that the combined models significantly outperformed individual testing methods, with the best model achieving an AUC of 0.845, highlighting the potential of integrating advanced imaging and traditional diagnostic tests for better cervical cancer detection.

Article Abstract

Purpose: To develop and evaluate the colposcopy based deep learning model using all kinds of cervical images for cervical screening, and investigate the synergetic benefits of the colposcopy, the cytology test, and the HPV test for improving cervical screening performance.

Methods: This study consisted of 2160 women who underwent cervical screening, there were 442 cases with the histopathological confirmed high-grade squamous intraepithelial lesion (HSIL) or cancer, and the remained 1718 women were controls. Three kinds of cervical images were acquired from colposcopy including the saline image of cervix after saline irrigation, the acetic acid image of cervix after applying acetic acid solution, and the iodine image of cervix after applying Lugol's iodine solution. Each kind of image was used to build a single-image based deep learning model by the VGG-16 convolutional neural network, respectively. A multiple-images based deep learning model was built using multivariable logistic regression (MLR) by combining the single-image based models. The performance of the visual inspection was also obtained. The results of the cytology test and HPV test were used to build a Cytology-HPV joint diagnostic model by MLR. Finally, a cross-modal integrated model was built using MLR by combining the multiple-images based deep learning model, the cytology test results, and the HPV test results. The performances of models were tested in an independent test set using the area under the receiver operating characteristic curve (AUC).

Results: The saline image, acetic acid image, and iodine image based deep learning models had AUC of 0.760, 0.791, and 0.840. The multiple-images based deep learning model achieved an improved AUC of 0.845. The AUC of the visual inspection was 0.751. The Cytology-HPV joint diagnostic model had an AUC of 0.837, which was higher than the cytology test (AUC = 0.749) and the HPV test (AUC = 0.742). The cross-modal integrated model achieved the best performance with AUC of 0.921.

Conclusions: Combining all kinds of cervical images were benefit for improving the performance of the colposcopy based deep learning model, and more accurate cervical screening could be achieved by incorporating the colposcopy based deep learning model, the cytology test results, and the HPV test results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmedinf.2021.104675DOI Listing

Publication Analysis

Top Keywords

deep learning
36
based deep
32
learning model
28
hpv test
24
cervical screening
20
cytology test
20
test hpv
16
test
12
colposcopy based
12
kinds cervical
12

Similar Publications

Object detection in motion management scenarios based on deep learning.

PLoS One

January 2025

School of Physical Education, Jinjiang College, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.

In athletes' competitions and daily training, in order to further strengthen the athletes' sports level, it is usually necessary to analyze the athletes' sports actions at a specific moment, in which it is especially important to quickly and accurately identify the categories and positions of the athletes, sports equipment, field boundaries and other targets in the sports scene. However, the existing detection methods failed to achieve better detection results, and the analysis found that the reasons for this phenomenon mainly lie in the loss of temporal information, multi-targeting, target overlap, and coupling of regression and classification tasks, which makes it more difficult for these network models to adapt to the detection task in this scenario. Based on this, we propose for the first time a supervised object detection method for scenarios in the field of motion management.

View Article and Find Full Text PDF

We study image segmentation using spatiotemporal dynamics in a recurrent neural network where the state of each unit is given by a complex number. We show that this network generates sophisticated spatiotemporal dynamics that can effectively divide an image into groups according to a scene's structural characteristics. We then demonstrate a simple algorithm for object segmentation that generalizes across inputs ranging from simple geometric objects in grayscale images to natural images.

View Article and Find Full Text PDF

Accurate diagnosis of pancreatic cancer using CT scan images is critical for early detection and treatment, potentially saving numerous lives globally. Manual identification of pancreatic tumors by radiologists is challenging and time-consuming due to the complex nature of CT scan images and variations in tumor shape, size, and location of the pancreatic tumor also make it challenging to detect and classify different types of tumors. Thus, to address this challenge we proposed a four-stage framework of computer-aided diagnosis systems.

View Article and Find Full Text PDF

Optical Coherence Tomography (OCT) offers high-resolution images of the eye's fundus. This enables thorough analysis of retinal health by doctors, providing a solid basis for diagnosis and treatment. With the development of deep learning, deep learning-based methods are becoming more popular for fundus OCT image segmentation.

View Article and Find Full Text PDF

Enhancing the performance of 5ph-IPMSM control plays a crucial role in advancing various innovative applications such as electric vehicles. This paper proposes a new reinforcement learning (RL) control algorithm based twin-delayed deep deterministic policy gradient (TD3) algorithm to tune two cascaded PI controllers in a five-phase interior permanent magnet synchronous motor (5ph-IPMSM) drive system based model predictive control (MPC). The main purpose of the control methodology is to optimize the 5ph-IPMSM speed response either in constant torque region or constant power region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!