Squaraine dyes are a family of compounds known for their relevant photophysical and photochemical properties potentially useful as photosensitizing agents. Since pyridines have been introduced into the skeleton of several families of compounds to enhance their pharmacological activity, and this approach had not yet been performed on squaraines, novel dyes derived from benz[e]indole functionalized with picolyl- and dipicolylamine and N-ethyl and -hexyl chains were designed and synthesized. After being fully characterized, their interaction with human albumin was in vitro and in silico evaluated. Dyes were further assessed for their phototoxicity activity, and the most interesting ones were studied regarding cell localization and induction of morphological cell changes, genotoxicity, apoptosis and cell cycle arrest. The molecules with N-ethyl chains showed the greatest in vitro light-dependent cytotoxic effects, particularly the zwitterionic squaraine dye and the one bearing a single pyridine unit, which also exhibited a more significant interaction with human albumin. Phenotypically, the cells incubated with these squaraines became smaller and rounded after irradiation, the effects varying with the tested concentration. Genotoxic effects were observed even without irradiation, being more evident for the N-ethyl picolylamine-derived dye. The fluorescence emitted by Rhodamine 123 largely coincided with that emitted by the dyes, suggesting that they are found preferentially in mitochondria. After irradiation, an increase in the subG1 population was verified by propidium iodide-staining analysis by flow cytometry, indicative of cell death by apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2021.114071 | DOI Listing |
Molecules
December 2024
Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA.
Phosphorus-containing fluorophores provide a versatile framework for tailoring photophysical properties, enabling the design of advanced fluorogenic materials for various applications. Boron dipyrromethene (BODIPY) and squaraine dyes are of interest due to their multifaceted modularity and synthetic accessibility. Incorporating phosphorus-based functional groups into BODIPY or squaraine scaffolds has been achieved through a plethora of synthetic methods, including post-dye assembly functionalization.
View Article and Find Full Text PDFAnal Sci
December 2024
NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China.
We synthesized a squaraine dye (F-0) to develop a method for detecting pyrophosphate (PPi) and alkaline phosphatase (ALP) by modulating the fluorescence of F-0. The fluorescence intensity of the F-0 system was quenched upon the addition of Cu ions; however, it was restored when PPi was introduced due to the formation of a complex between PPi and Cu. Since ALP can hydrolyze PPi, the fluorescence of the system was quenched again upon the addition of ALP.
View Article and Find Full Text PDFBiosensors (Basel)
September 2024
Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-Ku, Kitakyushu-Shi, Fukuoka 808-0196, Japan.
Trypsin enzyme has gained recognition as a potential biomarker in several tumors, such as colorectal, gastric, and pancreatic cancer, highlighting its importance in disease diagnosis. In response to the demand for rapid, cost-effective, and real-time detection methods, we present an innovative strategy utilizing the design and synthesis of NIR-sensitive dye-peptide conjugate () for the sensitive and selective monitoring of trypsin activity by fluorescence ON/OFF sensing. The current research deals with the design and synthesis of three unsymmetrical squaraine dyes , , and along with a dye-peptide conjugate as a trypsin-specific probe followed by their photophysical characterizations.
View Article and Find Full Text PDFAdv Mater
November 2024
Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
Due to the soliton-like electronic structural characteristics, cyanine dyes typically exhibit spectral behaviors such as large molar extinction coefficients, narrow spectra, and high fluorescence efficiency. However, their extensive applications as emitters in electroluminescence are largely ignored due to their serious emission quenching in the aggregation state. Herein, it is reported a squaraine dye (a type of cyanine) SQPhEt.
View Article and Find Full Text PDFACS Nano
September 2024
Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
Combined photodynamic and photothermal therapy (PDT and PTT) can achieve more superior therapeutic effects than the sole mode by maximizing the photon utilization, but there remains a significant challenge in the development of related single-molecule photosensitizers (PSs), particularly those with type I photosensitization. In this study, self-assembly of squaraine dyes (SQs) is shown to be a promising strategy for designing PSs for combined type I PDT and PTT, and a supramolecular PS (TPE-SQ7) has been successfully developed through subtle molecular design of an indolenine SQ, which can self-assemble into highly ordered H-aggregates in aqueous solution as well as nanoparticles (NPs). In contrast to the typical quenching effect of H-aggregates on reactive oxygen species (ROS) generation, our results encouragingly manifest that H-aggregates can enhance type I ROS (OH) generation by facilitating the intersystem crossing process while maintaining a high PTT performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!