Using Machine Learning to Identify Intravenous Contrast Phases on Computed Tomography.

Comput Methods Programs Biomed

Zebra Medical Vision LTD, Shfayim, Israel; Department of Radiology, Rabin Medical Center, Petach Tikvah, Israel. Electronic address:

Published: March 2022

Purpose: The purpose of the present work is to demonstrate the application of machine learning (ML) techniques to automatically identify the presence and physiologic phase of intravenous (IV) contrast in Computed Tomography (CT) scans of the Chest, Abdomen and Pelvis.

Materials And Methods: Training, testing and validation data were acquired from a dataset of 82,690 chest and abdomen CT examinations performed at 17 different institutions. Free text in DICOM metadata was utilized as weak labels for semi-supervised classification training. Contrast phase identification was approached as a classification task, using a 12-layer CNN and ResNet18 with four contrast-phase output. The model was reformulated to fit a regression task aimed to predict actual seconds from time of IV contrast administration to series image acquisition. Finally, transfer learning was used to optimize the model to predict contrast presence on CT Chest.

Results: By training based on labels inferred from noisy, free text DICOM information, contrast phase was predicted with 93.3% test accuracy (95% CI: 89.3%, 96.6%) . Regression analysis resulted in delineation of early vs late arterial phases and a nephrogenic phase in between the portal venous and delayed excretory phase. Transfer learning applied to Chest CT achieved an AUROC of 0.776 (95% CI: 0.721, 0.832) directly using the model trained for abdomen CT and 0.999 (95% CI: 0.998, 1.000) by fine-tuning.

Conclusions: The presence and phase of contrast on CT examinations of the Abdomen-pelvis accurately and automatically be ascertained by a machine learning algorithm. Transfer learning applied to CT Chest achieves high precision with as little as 100 labeled samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2021.106603DOI Listing

Publication Analysis

Top Keywords

machine learning
12
transfer learning
12
intravenous contrast
8
computed tomography
8
chest abdomen
8
free text
8
text dicom
8
contrast phase
8
learning applied
8
applied chest
8

Similar Publications

Identification of circadian rhythm-related biomarkers and development of diagnostic models for Crohn's disease using machine learning algorithms.

Comput Methods Biomech Biomed Engin

January 2025

Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.

The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data.

View Article and Find Full Text PDF

Context.—: Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities.

Objective.

View Article and Find Full Text PDF

In this research, a green approach utilizing deep eutectic solvent liquid-liquid microextraction is combined with smartphone digital image colorimetry for the determination of boron in nut samples. A smartphone camera was used to capture the image of the analyte extract located in a custom-made colorimetric box. Using ImageJ software, the images were split into RGB channels, with the green channel identified as the optimum.

View Article and Find Full Text PDF

Assessing water quality restoration measures in Lake Pampulha (Brazil) through remote sensing imagery.

Environ Sci Pollut Res Int

January 2025

LEESU, Ecole des Ponts Paris Tech, UPEC, AgroParisTech, F-77455 Marne-la-Vallée, Paris, France.

Urban reservoirs are frequently exposed to impacts from high population density, polluting activities, and the absence of environmental control measures and monitoring. In this study, we investigated the use of satellite imagery to assess restoration measures and support decision-making in a hypereutrophic urban reservoir. Since 2016, Lake Pampulha (Brazil) has undergone restoration measures, including the application of Phoslock®, to mitigate its poor water quality conditions.

View Article and Find Full Text PDF

Objective: Despite the identification of various prognostic factors for anaplastic thyroid carcinoma (ATC) patients over the years, a precise prognostic tool for these patients is still lacking. This study aimed to develop and validate a prognostic model for predicting survival outcomes for ATC patients using random survival forests (RSF), a machine learning algorithm.

Methods: A total of 1222 ATC patients were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and randomly divided into a training set of 855 patients and a validation set of 367 patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!