Purpose: The purpose of the present work is to demonstrate the application of machine learning (ML) techniques to automatically identify the presence and physiologic phase of intravenous (IV) contrast in Computed Tomography (CT) scans of the Chest, Abdomen and Pelvis.
Materials And Methods: Training, testing and validation data were acquired from a dataset of 82,690 chest and abdomen CT examinations performed at 17 different institutions. Free text in DICOM metadata was utilized as weak labels for semi-supervised classification training. Contrast phase identification was approached as a classification task, using a 12-layer CNN and ResNet18 with four contrast-phase output. The model was reformulated to fit a regression task aimed to predict actual seconds from time of IV contrast administration to series image acquisition. Finally, transfer learning was used to optimize the model to predict contrast presence on CT Chest.
Results: By training based on labels inferred from noisy, free text DICOM information, contrast phase was predicted with 93.3% test accuracy (95% CI: 89.3%, 96.6%) . Regression analysis resulted in delineation of early vs late arterial phases and a nephrogenic phase in between the portal venous and delayed excretory phase. Transfer learning applied to Chest CT achieved an AUROC of 0.776 (95% CI: 0.721, 0.832) directly using the model trained for abdomen CT and 0.999 (95% CI: 0.998, 1.000) by fine-tuning.
Conclusions: The presence and phase of contrast on CT examinations of the Abdomen-pelvis accurately and automatically be ascertained by a machine learning algorithm. Transfer learning applied to CT Chest achieves high precision with as little as 100 labeled samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2021.106603 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data.
View Article and Find Full Text PDFArch Pathol Lab Med
January 2025
the Department of Pathology, The Ohio State University, Columbus (Parwani).
Context.—: Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities.
Objective.
Anal Sci
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, TRNC, Mersin 10, 99138, Nicosia, Turkey.
In this research, a green approach utilizing deep eutectic solvent liquid-liquid microextraction is combined with smartphone digital image colorimetry for the determination of boron in nut samples. A smartphone camera was used to capture the image of the analyte extract located in a custom-made colorimetric box. Using ImageJ software, the images were split into RGB channels, with the green channel identified as the optimum.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
LEESU, Ecole des Ponts Paris Tech, UPEC, AgroParisTech, F-77455 Marne-la-Vallée, Paris, France.
Urban reservoirs are frequently exposed to impacts from high population density, polluting activities, and the absence of environmental control measures and monitoring. In this study, we investigated the use of satellite imagery to assess restoration measures and support decision-making in a hypereutrophic urban reservoir. Since 2016, Lake Pampulha (Brazil) has undergone restoration measures, including the application of Phoslock®, to mitigate its poor water quality conditions.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Thyroid Breast Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
Objective: Despite the identification of various prognostic factors for anaplastic thyroid carcinoma (ATC) patients over the years, a precise prognostic tool for these patients is still lacking. This study aimed to develop and validate a prognostic model for predicting survival outcomes for ATC patients using random survival forests (RSF), a machine learning algorithm.
Methods: A total of 1222 ATC patients were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and randomly divided into a training set of 855 patients and a validation set of 367 patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!