Cyanobacteria are well known for their plethora of applications in the fields of food industry, pharmaceuticals and bioenergy. Their simple growth requirements, remarkable growth rate and the ability to produce a wide range of bio-active compounds enable them to act as an efficient biorefinery for the production of valuable metabolites. Most of the cyanobacteria based biorefineries are targeting single products and thus fails to meet the efficient valorization of biomass. On the other hand, multiple products recovering cyanobacterial biorefineries can efficiently valorize the biomass with minimum to zero waste generation. But there are plenty of bottlenecks and challenges allied with cyanobacterial biorefineries. Most of them are being associated with the production processes and downstream strategies, which are difficult to manage economically. There is a need to propose new solutions to eliminate these tailbacks so on to elevate the cyanobacterial biorefinery to be an economically feasible, minimum waste generating multiproduct biorefinery. Cost-effective approaches implemented from production to downstream processing without affecting the quality of products will be beneficial for attaining economic viability. The integrated approaches in cultivation systems as well as downstream processing, by simplifying individual processes to unit operation systems can obviously increase the economic feasibility to a certain extent. Low cost approaches for biomass production, multiparameter optimization and successive sequential retrieval of multiple value-added products according to their high to low market value from a biorefinery is possible. The nanotechnological approaches in cyanobacterial biorefineries make it one step closer to the goal. The current review gives an overview of strategies used for constructing self-sustainable- economically feasible- minimum waste generating; multiple products based cyanobacterial biorefineries by the efficient valorization of biomass. Also the possibility of uplifting new cyanobacterial strains for biorefineries is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.152795 | DOI Listing |
Water Res
December 2024
GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, Barcelona 08034, Spain. Electronic address:
Cyanobacterial wastewater-based biorefineries are a sustainable alternative to obtain high-value products with reduced costs. This study aimed to obtain phycobiliproteins and carotenoids, along with biogas from a wastewater-borne cyanobacterium grown in secondary effluent from an urban wastewater treatment plant, namely treated wastewater. For the first time, the presence of contaminants of emerging concern in concentrated pigment extracts was assessed.
View Article and Find Full Text PDFMetab Eng
January 2025
Department of Energy, Environment, and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, United States. Electronic address:
Large language models (LLMs) can complete general scientific question-and-answer, yet they are constrained by their pretraining cut-off dates and lack the ability to provide specific, cited scientific knowledge. Here, we introduce Network for Knowledge Organization (NEKO), a workflow that uses LLM Qwen to extract knowledge through scientific literature text mining. When user inputs a keyword of interest, NEKO can generate knowledge graphs to link bioinformation entities and produce comprehensive summaries from PubMed search.
View Article and Find Full Text PDFCrit Rev Biotechnol
September 2024
The College of Forestry, Beijing Forestry University, Beijing, PR China.
Nat Commun
June 2023
Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.
Glucose is the most abundant monosaccharide, serving as an essential energy source for cells in all domains of life and as an important feedstock for the biorefinery industry. The plant-biomass-sugar route dominates the current glucose supply, while the direct conversion of carbon dioxide into glucose through photosynthesis is not well studied. Here, we show that the potential of Synechococcus elongatus PCC 7942 for photosynthetic glucose production can be unlocked by preventing native glucokinase activity.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
April 2023
Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada.
Background: Carbon capture using alkaliphilic cyanobacteria can be an energy-efficient and environmentally friendly process for producing bioenergy and bioproducts. The inefficiency of current harvesting and downstream processes, however, hinders large-scale feasibility. The high alkalinity of the biomass also introduces extra challenges, such as potential corrosion, inhibitory effects, or contamination of the final products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!