A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Continuous Flow Bioconjugations of NIR-AZA Fluorophores via Strained Alkyne Cycloadditions with Intra-Chip Fluorogenic Monitoring. | LitMetric

Continuous Flow Bioconjugations of NIR-AZA Fluorophores via Strained Alkyne Cycloadditions with Intra-Chip Fluorogenic Monitoring.

Chemistry

Chemistry Department, RCSI, 123 St. Stephen's Green, Dublin, 2, Ireland.

Published: February 2022

The importance of bioconjugation reactions continues to grow for cell specific targeting and dual therapeutic plus diagnostic medical applications. This necessitates the development of new bioconjugation chemistries, in-flow synthetic and analytical methods. With this goal, continuous flow bioconjugations were readily achieved with short residence times for strained alkyne substituted carbohydrate and therapeutic peptide biomolecules in reaction with azide and tetrazine substituted fluorophores. The strained alkyne substrates included substituted 2-amino-2-deoxy-α-D-glucopyranose, and the linear and cyclic peptide sequences QIRQQPRDPPTETLELEVSPDPAS-OH and c(RGDfK) respectively. The catalyst and reagent-free inverse electron demand tetrazine cycloadditions proved more favourable than the azide 1,3-dipolar cycloadditions. Reaction completion was achieved with residence times of 5 min at 40 °C for tetrazine versus 10 min at 80 °C for azide cycloadditions. The use of a fluorogenic tetrazine fluorophore, in a glass channelled reactor chip, allowed for intra-chip reaction monitoring by recording fluorescence intensities at various positions throughout the chip. As the Diels-Alder reactions proceeded through the chip, the fluorescence intensity increased accordingly in real-time. The application of continuous flow fluorogenic bioconjugations could offer an efficient translational access to theranostic agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305252PMC
http://dx.doi.org/10.1002/chem.202104111DOI Listing

Publication Analysis

Top Keywords

continuous flow
12
strained alkyne
12
flow bioconjugations
8
fluorophores strained
8
residence times
8
bioconjugations nir-aza
4
nir-aza fluorophores
4
cycloadditions
4
alkyne cycloadditions
4
cycloadditions intra-chip
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!