The superatomic orbital splitting (SOS) method is developed to understand the electronic structures of coinage metal nanoclusters, in which delocalized electron counts are not magic numbers. Because the symmetry of a metal core can significantly affect the electronic structure of a nanocluster, this method takes the shape of the core into account in determining the order of group orbital levels. By taking nanoclusters as superatoms, a highly positively charged core is established by removing the ligands and staples. The superatomic orbitals split into group orbitals at different energy levels because of the nonspherical shape of the cluster core. Therefore, the electron configuration of the nonmagic-number nanocluster can be qualitatively analyzed without quantum chemical calculations, which is very important for understanding the stability of the cluster.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c03563 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!