Programming "Atomic Substitution" in Alloy Colloidal Crystals Using DNA.

Nano Lett

Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States.

Published: January 2022

Although examples of colloidal crystal analogues to metal alloys have been reported, general routes for preparing 3D analogues to random substitutional alloys do not exist. Here, we use the programmability of DNA (length and sequence) to match nanoparticle component sizes, define parent lattice symmetry and substitutional order, and achieve faceted crystal habits. We synthesized substitutional alloy colloidal crystals with either ordered or random arrangements of two components (Au and FeO nanoparticles) within an otherwise identical parent lattice and crystal habit, confirmed via scanning electron microscopy and small-angle X-ray scattering. Energy dispersive X-ray spectroscopy reveals information regarding composition and local order, while the magnetic properties of FeO nanoparticles can direct different structural outcomes for different alloys in an applied magnetic field. This work constitutes a platform for independently defining substitution within multicomponent colloidal crystals, a capability that will expand the scope of functional materials that can be realized through programmable assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c03742DOI Listing

Publication Analysis

Top Keywords

colloidal crystals
12
alloy colloidal
8
parent lattice
8
feo nanoparticles
8
programming "atomic
4
"atomic substitution"
4
substitution" alloy
4
colloidal
4
crystals dna
4
dna examples
4

Similar Publications

[Preparation of multi-layer compound microcapsules and their application in self-healing of concrete cracks].

Sheng Wu Gong Cheng Xue Bao

January 2025

College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.

Concrete is widely used in building construction, civil engineering, roads, bridges, etc., but concrete cracking remains a major issue in the engineering industry. To develop an effective and feasible concrete repair technology, this study combined microbial and microencapsulation technologies to prepare a multi-layer compound microcapsule using the piercing method.

View Article and Find Full Text PDF

Unraveling the role of Ta in the phase transition of Pb(TaSe) using temperature-dependent Raman spectroscopy.

J Colloid Interface Sci

January 2025

Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai 200444, China. Electronic address:

Phase engineering strategies in two-dimensional transition metal dichalcogenides (2D-TMDs) have garnered significant attention due to their potential applications in electronics, optoelectronics, and energy storage. Various methods, including direct synthesis, pressure control, and chemical doping, have been employed to manipulate structural transitions in 2D-TMDs. Metal intercalation emerges as an effective technique to modulate phase transition dynamics by inserting external atoms or ions between the layers of 2D-TMDs, altering their electronic structure and physical properties.

View Article and Find Full Text PDF

Designing pillar-layered metal-organic frameworks with photo-induced electron transfer interactions between ligands for enhanced photodynamic sterilization and photocatalytic degradation of dyes and antibiotics.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004 PR China. Electronic address:

Pollution caused by antibiotics, bacteria, and organic dyes presents global public health challenges, posing serious risks to human health. Consequently, new, efficient, fast, and simple photocatalytic systems are urgently required. To this end, 2,7-di(pyridin-4-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NDI)-an electron acceptor-is introduced as a connecting column into a porphyrin-based metal-organic layer (2DTcpp) with excellent photocatalytic activity; this modification yields a three-dimensional pillar-layered metal-organic framework (MOF, 3DNDITcpp) with superior photocatalytic reactive oxygen species (ROS) generation capability.

View Article and Find Full Text PDF

Simultaneous regulation of grain size and interface of single-crystal ultrahigh-nickel LiNiCoMnO via one-step LiZrO coating.

J Colloid Interface Sci

January 2025

Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China; Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Lab of Fine Ceramics, Tsinghua University, Beijing 100084, China. Electronic address:

Single-crystal ultrahigh-nickel LiNiCoMnO (NCM) materials are recognized for significant potential in the development of high-performance lithium-ion batteries, primarily owing to their higher energy density and superior cycling performance compared to polycrystalline counterparts. However, these materials require high calcination temperatures, suffer from significant lithium/nickel mixing, and face challenges in composition control. Although high-activity oxide precursors prepared via spray pyrolysis can reduce calcination temperatures, the smaller particle size of the resulting NCM materials intensifies interfacial side reactions.

View Article and Find Full Text PDF

Tumor hypoxia significantly limits the effectiveness of radiotherapy, as oxygen is crucial for producing cancer-killing reactive oxygen species. To address this, we synthesized nanosized faujasite (PBS-Na-FAU) zeolite crystals using clinical-grade phosphate-buffered saline (PBS) as the solvent, ensuring preserved crystallinity, microporous volume, and colloidal stability. The zeolite nanocrystals showed enhanced safety profiles and , and studies showed no apparent toxicity to animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!