Single-Atom Pt Boosting Electrochemical Nonenzymatic Glucose Sensing on Ni(OH)/N-Doped Graphene.

Anal Chem

Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China.

Published: February 2022

Conventional nanomaterials in electrochemical nonenzymatic sensing face huge challenge due to their complex size-, surface-, and composition-dependent catalytic properties and low active site density. In this work, we designed a single-atom Pt supported on Ni(OH) nanoplates/nitrogen-doped graphene (Pt/Ni(OH)/NG) as the first example for constructing a single-atom catalyst based electrochemical nonenzymatic glucose sensor. The resulting Pt/Ni(OH)/NG exhibited a low anode peak potential of 0.48 V and high sensitivity of 220.75 μA mM cm toward glucose, which are 45 mV lower and 12 times higher than those of Ni(OH), respectively. The catalyst also showed excellent selectivity for several important interferences, short response time of 4.6 s, and high stability over 4 weeks. Experimental and density functional theory (DFT) calculated results reveal that the improved performance of Pt/Ni(OH)/NG could be attributed to stronger binding strength of glucose on single-atom Pt active centers and their surrounding Ni atoms, combined with fast electron transfer ability by the adding of the highly conductive NG. This research sheds light on the applications of SACs in the field of electrochemical nonenzymatic sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c04912DOI Listing

Publication Analysis

Top Keywords

electrochemical nonenzymatic
16
nonenzymatic glucose
8
nonenzymatic sensing
8
single-atom
4
single-atom boosting
4
electrochemical
4
boosting electrochemical
4
nonenzymatic
4
glucose
4
glucose sensing
4

Similar Publications

Objectives: Nonenzymatic biosensor-based-conductive polymers like polyaniline are highly electrochemically stable, cheap, and easy to synthesize biosensors, which is the main objective of research as well as testing applied in different pH conditions to get optimum sensitivity.

Methods: A nonenzymatic glucose biosensor based on polyaniline was electrochemically deposited on a glassy carbon electrode; the cyclic voltammetry under range applied voltage -0.2 to 1.

View Article and Find Full Text PDF

Monitoring HO levels in live cells is essential due to its superior stability and possible severity inside the cell. The quest for a superior platform capable of detecting cellular-level hydrogen peroxide (HO) concentrations without necessitating the use of high-cost enzymes is of utmost importance. Here, the quantification of intracellular HO concentrations has been performed using silver metal polymer-based nonenzymatic electrochemical detection.

View Article and Find Full Text PDF

Owing to the adverse consequences of excess glucose (Glu) and hydrogen peroxide (HO) on humans, it is imperative to develop an electrochemical sensor for detection of these analytes with good selectivity and sensitivity. Herein, a nanohybrid comprising nickel cobaltite nanoparticles (NiCoO NPs) embedded on conductive TiCT nanosheets (NSs) has been prudently designed and employed for the electrochemical detection of Glu and HO. The developed nanohybrid has been systematically characterized using morphological and spectral techniques, and then immobilized on a glassy carbon electrode (GCE).

View Article and Find Full Text PDF

Electrochemical sensing has shown great promise in monitoring neurotransmitter levels, particularly dopamine, essential for diagnosing neurological illnesses like Parkinson's disease. Such techniques are easy, cost-effective, and extremely sensitive. The present investigation discusses the synthesis, characterization, and potential use of a cysteine-grafted Cu MOF/ZnO/PANI nanocomposite deposited on the modified glassy carbon electrode surface for nonenzymatic electrochemical sensing of dopamine.

View Article and Find Full Text PDF

This work reports on the assessment of a non-hydrolytic electrochemical sensor for glucose sensing that is developed using functionalized carbon nanotubes (fCNTs)/Co(OH). The morphology of the nanocomposite was investigated by scanning electron microscopy, which revealed that the CNTs interacted with Co(OH). This content formed a nanocomposite that improved the electrochemical characterizations of the electrode, including the electrochemical active surface area and capacitance, thus improving sensitivity to glucose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!