Nanotransfer printing techniques have attracted significant attention due to their outstanding simplicity, cost-effectiveness, and high throughput. However, conventional methods a chemical medium hamper the efficient fabrication with large-area uniformity and rapid development of electronic and photonic devices. Herein, we report a direct chemisorption-assisted nanotransfer printing technique based on the nanoscale lower melting effect, which is an enabling technology for two- or three-dimensional nanostructures with feature sizes ranging from tens of nanometers up to a 6 in. wafer-scale. The method solves the major bottleneck (large-scale uniform metal catalysts with nanopatterns) encountered by metal-assisted chemical etching. It also achieves wafer-scale, uniform, and controllable nanostructures with extremely high aspect ratios. We further demonstrate excellent uniformity and high performance of the resultant devices by fabricating 100 photodetectors on a 6 in. Si wafer. Therefore, our method can create a viable route for next-generation, wafer-scale, uniformly ordered, and controllable nanofabrication, leading to significant advances in various applications, such as energy harvesting, quantum, electronic, and photonic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c06781 | DOI Listing |
Small Methods
January 2025
School of Electrical and Electronic Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
Silicon nanowires (Si NWs) have attracted considerable interest owing to their distinctive properties, which render them promising candidates for a wide range of advanced applications in electronics, photonics, energy storage, and sensing. However, challenges in achieving large-scale production, high uniformity, and shape control limit their practical use. This study presents a novel fabrication approach combining nanoimprint lithography, nanotransfer printing, and metal-assisted chemical etching to produce highly uniform and shape-controlled Si NW arrays.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
The unique characteristics of metasurfaces to precisely control the amplitude, phase, and polarization of light within a thin, flat footprint make them a promising replacement for bulky optical components. However, fabrication methods of conventional metasurfaces have suffered from low throughput and high costs, limiting scalability and practical application. To address these challenges, an advanced fabrication technique is developed by combining deep-ultraviolet argon fluoride photolithography with wafer-scale nanotransfer printing to facilitate the scalable fabrication of metal-insulator-metal structures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Materials (Basel)
November 2024
Department of Materials Science and Engineering, Pukyong National University (PKNU), Busan 48513, Republic of Korea.
Nano-transfer printing (nTP) has emerged as an effective method for fabricating three-dimensional (3D) nanopatterns on both flat and non-planar substrates. However, most transfer-printed 3D patterns tend to exhibit non-discrete and/or non-porous structures, limiting their application in high-precision nanofabrication. In this study, we introduce a simple and versatile approach to produce highly ordered, porous 3D cross-bar arrays through precise control of the nTP process parameters.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2024
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
As the demand for diverse nanostructures in physical/chemical devices continues to rise, the development of nanotransfer printing (nTP) technology is receiving significant attention due to its exceptional throughput and ease of use. Over the past decade, researchers have attempted to enhance the diversity of materials and substrates used in transfer processes as well as to improve the resolution, reliability, and scalability of nTP. Recent research on nTP has made continuous progress, particularly using the control of the interfacial adhesion force between the donor mold, target material, and receiver substrate, and numerous practical nTP methods with niche applications have been demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!