Objectives: The aim of this study was to evaluate the SBS of pre-sintered and sintered zirconia to a selfadhesive resin cement after various treatment (air abrasion and the Nd:YAG laser irradiation at varying power levels -1 W, 2 W and 3 W).
Material And Methods: Ninety-nine zirconia specimens were prepared and divided into 3 groups: control (with no surface treatment); and pre-sintered and sintered groups with surface treatment. Surface treatment was applied before sintering in the pre-sintered group and after sintering in the sintered group. After following all protocols, a resin cement was layered on the zirconia surface. Shear bond strength was measured using a universal testing machine. The results were subjected to the statistical analysis. The surface topography and phase transformation of zirconia were evaluated using the atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses after surface treatment.
Results: The laser irradiation (3 W, 1 W and 2 W) of the pre-sintered zirconia surface resulted in the highest SBS values (p < 0.001), while the lowest SBS values were obtained with airborne particle abrasion of the pre-sintered and sintered zirconia surfaces.
Conclusions: Laser irradiation increased the SBS of pre-sintered zirconia to a resin cement. Surface treatment with air abrasion had a lesser effect on the SBS values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17219/dmp/135652 | DOI Listing |
Anal Chem
January 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
The advancement of lanthanide fingerprint sensors characterized by targeted emission responses and low self-fluorescence interference for the detection of biothiols is of considerable importance for the early diagnosis and treatment of cancer. Herein, the lanthanide "personality function tailoring" HOF composite sensor array is designed for the specific discrimination of biothiols (GSH, Cys, and Hcy) based on the activation of various luminescent molecules, such as r-AuNCs/luminol via HOF surface proximity. Lumi-HOF@Ce serves as a versatile platform for catalyzing the oxidation of -phenylenediamine (OPD) to generate yellow fluorescent oligomers, accompanied by the fluorescence attenuation of luminol.
View Article and Find Full Text PDFAmplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.
View Article and Find Full Text PDFUnlabelled: Zika virus (ZIKV) infection can lead to a variety of clinical outcomes, including severe congenital abnormalities. The phosphatidylserine (PS) receptors AXL and TIM-1 are recognized as critical entry factors for ZIKV . However, it remains unclear if and how ZIKV regulates these receptors during infection.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
October 2024
Université Paris-Saclay, Gustave Roussy, Inserm, Molecular Radiotherapy and Therapeutic Innovation, U1030, 94800 Villejuif, France.
Background And Purpose: Deep-learning-based automatic segmentation is widely used in radiation oncology to delineate organs-at-risk. Dual-energy CT (DECT) allows the reconstruction of enhanced contrast images that could help with manual and auto-delineation. This paper presents a performance evaluation of a commercial auto-segmentation software on image series generated by a DECT.
View Article and Find Full Text PDFBio Protoc
January 2025
Laboratory of Protein Translation and Fungal Pathogenesis, Regional Centre for Biotechnology, Faridabad, India.
, labeled an urgent threat by the CDC, shows significant resilience to treatments and disinfectants via biofilm formation, complicating treatment/disease management. The inconsistencies in biofilm architecture observed across studies hinder the understanding of its role in pathogenesis. Our novel in vitro technique cultivates biofilms on gelatin-coated coverslips, reliably producing multilayer biofilms with extracellular polymeric substances (EPS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!