Role of Ayurvedic Plants as Anticancer Agents.

Methods Mol Biol

Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

Published: March 2022

The use of natural products has been increasing at a rapid pace, worldwide, with the aim to maintain a healthy lifestyle and to modify one's dietary habits. Ayurveda is a domain that has numerous wealth of information concerning medicinal plants and its part in controlling numerous ailments, such as neoplastic, cardiovascular, neurological plus immunological ailments. The use of such medicinal plants is important for preventing such diseases, especially "cancer" which is the succeeding foremost cause of mortality collectively. Even though abundant developments have been made in the management and control of cancer progression, substantial deficits and scope for advancement still continue to be unchanged. Several lethal adjacent consequences occur throughout the course of chemotherapy. Natural treatments, such as the use of plant-derived products in the treatment of cancer, might reduce the hostile side effects. Presently, a few plant-based products and its phytoconstituents are being utilized for the management of cancer. Here we have focused on numerous plant-derived phytochemicals and promising compounds from these plants to act as anticancer agents, along with their mechanisms of action.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1952-0_14DOI Listing

Publication Analysis

Top Keywords

plants anticancer
8
anticancer agents
8
medicinal plants
8
role ayurvedic
4
plants
4
ayurvedic plants
4
agents natural
4
natural products
4
products increasing
4
increasing rapid
4

Similar Publications

Over the last decade, the environmental and wellness cost of antibiotic drug resistance to the societies have been astounding and require urgent attention Metal oxide nanomaterials have been achieved a pull-on deal with its entire applications in biological and photocatalytic applications. The present study conducts a comparative investigation on chemical and biogenic synthesis of zirconium dioxide (ZrO) nanoparticles aimed at enhancing their efficacy in their applications. The plant extract of Passiflora edulis act as a reducing and capping properties offering a sustainable and eco-friendly alternative.

View Article and Find Full Text PDF

In this present investigation, plant-mediated synthesis of titanium oxide (TiO) nanoparticles was synthesized from seagrass (Thalassia hemprichi) using the hot plate combustion method (HPCM). Synthesized TiO nanoparticles optical, functional, structural, and morphology properties were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). SEM analysis confirmed the spherical shape of the TiO nanoparticles were observed in various sizes, viz.

View Article and Find Full Text PDF

Targeted therapy is preferable over other therapeutics due to its limitation of drawbacks and better pharmaceutical outcomes. VEGF and its receptors have been observed to be hyper-activated in many cancer types and are considered promising targets for assigning anticancer agents. The current study is directed towards synthesis of novel antiproliferative 2-oxoindolin-3-ylidenes incorporating urea function with VEGFR-2 properties.

View Article and Find Full Text PDF

A self-assembled fluorescent nanoprobe recognized by FA1 site for specifically selecting HSA: Its applications in hemin detection, cell imaging and fluorescent tracing drug delivery.

Bioorg Chem

December 2024

Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China. Electronic address:

As naturally essential biomacromolecule, HSA has become diagnostic indicators for various diseases and universal carriers for anticancer drug delivery, therefore, fluorescence detection and labeling for HSA possess significant application value in the biomedical field. In this paper, hydrazide Schiff base fluorescent probe NDQC was designed and synthesized, which self-assembled into nanoparticles in aqueous solution system and demonstrated excellent selectivity and sensitivity towards HSA. Through displacement assay and molecular docking simulation, the binding of NDQC with HSA in FA1 site was demonstrated, thereby no obvious fluorescence signal presented for homologous protein BSA due to their structural differences in binding site.

View Article and Find Full Text PDF

The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!