The microbial transformation potential of 6:2 chlorinated polyfluorooctane ether sulfonate (6:2 Cl-PFESA) was explored in anaerobic microbial systems. Microbial communities from anaerobic wastewater sludge, an anaerobic digester, and anaerobic dechlorinating cultures enriched from aquifer materials reductively dechlorinated 6:2 Cl-PFESA to 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA), which was identified as the sole metabolite by non-target analysis. Rapid and complete reductive dechlorination of 6:2 Cl-PFESA was achieved by the anaerobic dechlorinating cultures. The microbial community of the anaerobic dechlorinating cultures was impacted by 6:2 Cl-PFESA exposure. Organohalide-respiring bacteria originally present in the anaerobic dechlorinating cultures, including , , and , decreased in relative abundance over time. As the relative abundance of organohalide-respiring bacteria decreased, the rates of 6:2 Cl-PFESA dechlorination decreased, suggesting that the most likely mechanism for reductive dechlorination of 6:2 Cl-PFESA was co-metabolism rather than organohalide respiration. Reductive defluorination of 6:2 Cl-PFESA was not observed. Furthermore, 6:2 H-PFESA exhibited 5.5 times lower sorption affinity to the suspended biosolids than 6:2 Cl-PFESA, with the prospect of increased mobility in the environment. These results show the susceptibility of 6:2 Cl-PFESA to microbially mediated reductive dechlorination and the likely persistence of the product, 6:2 H-PFESA, in anaerobic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.1c05475 | DOI Listing |
Chemosphere
January 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Trichloroethylene (TCE) is a common chlorinated hydrocarbon contaminant in soil and groundwater, and reductive dechlorination is a biological remediation. However, the TCE reductive dechlorination often stagnates in the stage of cis-1,2-dichloroethylene (cDCE) and chloroethylene (VC). Anaerobic/aerobic sequential degradation provides a new approach for the complete detoxification of TCE, while there has been no systematic summary of bacteria, enzymes, and pathways in the synergistic process.
View Article and Find Full Text PDFFront Microbiol
December 2024
Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.
Organohalide-respiring bacteria (OHRB) play a pivotal role in the transformation of organohalogens in diverse environments. This bibliometric analysis provides a timely overview of OHRB research trends and identifies knowledge gaps. Publication numbers have steadily increased since the process was discovered in 1982, with fluctuations in total citations and average citations per publication.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
The State University of New York College of Environmental Science and Forestry, Syracuse, USA.
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and are emitted during e-waste activities. Once they enter into the environment, PCBs could pose toxic effects to environmental compartments and public health. Reductive dechlorination offers a sustainable solution to manage the PCBs-contaminated environment.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China. Electronic address:
Organohalide-respiring bacteria (OHRB) play a key role in facilitating the detoxification of halogenated organics, but their slow growth and harsh growth conditions often limit their application in field remediation. In this study, we investigated the metabolic performance and organohalide respiration process of a non-obligate OHRB, Pseudomonas sp. CP-1, demonstrating favorable anaerobic reductive dechlorination ability of 2,4,6-trichlorophenol to 4-chlorophenol with a removal rate constant (k) of 0.
View Article and Find Full Text PDFSci Total Environ
January 2025
UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada. Electronic address:
Anaerobic digestion (AD) has very limited effectiveness against the removal of many emerging contaminants, including the pervasive antimicrobial triclocarban (TCC). This is the first study to compare two thermal pretreatment methods to evaluate the fate of persistent TCC and its transformation/degradation by-products during advanced AD. Two electromagnetic heating methods are employed: one uses an innovative radio frequency (RF) heating system at 13.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!