Single cell sorting of young yeast based on label-free fluorescence lifetime imaging microscopy.

J Biophotonics

Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, Shanghai, China.

Published: April 2022

Saccharomyces cerevisiae is an attractive organism used in the fermentation industry and is an important model organism for virus research. The ability to sort yeast cells is important for diverse applications. Replicative aging of Saccharomyces Cerevisiae is accompanied by metabolic changes that are related to an essential coenzyme, reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H). Here, a single cell sorting method based on fluorescence lifetime imaging microscopy (FLIM) and laser-induced forward transfer (LIFT) was implemented for the first time. The aging level of yeast was determined based on the FLIM by NAD(P)H, which was a label-free and noninvasive method for studying individual cells. Then, young and active yeast cells were sorted by the LIFT system at the single cell level. During the entire experiment, a sterile and humid environment was maintained to ensure the activity of cells. The high viability of sorted cells was achieved by the LIFT combining with FLIM.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.202100344DOI Listing

Publication Analysis

Top Keywords

single cell
12
cell sorting
8
fluorescence lifetime
8
lifetime imaging
8
imaging microscopy
8
saccharomyces cerevisiae
8
yeast cells
8
cells
5
sorting young
4
yeast
4

Similar Publications

Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.

View Article and Find Full Text PDF

Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.

View Article and Find Full Text PDF

Advances in modeling cellular state dynamics: integrating omics data and predictive techniques.

Anim Cells Syst (Seoul)

January 2025

Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea.

Dynamic modeling of cellular states has emerged as a pivotal approach for understanding complex biological processes such as cell differentiation, disease progression, and tissue development. This review provides a comprehensive overview of current approaches for modeling cellular state dynamics, focusing on techniques ranging from dynamic or static biomolecular network models to deep learning models. We highlight how these approaches integrated with various omics data such as transcriptomics, and single-cell RNA sequencing could be used to capture and predict cellular behavior and transitions.

View Article and Find Full Text PDF

Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.

View Article and Find Full Text PDF

Development of antibodies for clinical use is a complex process involving numerous aspects, with antigen specificity being the most important. Initially, polyclonal antibodies, that can recognize multiple specific and nonspecific antigens (polyreactive), were developed and were very effective in the treatments. Later on, the polyspecificity/polyreactivity of these polyclonal antibodies (binding to multiple antigens) raised concerns about therapeutic efficacy because of their nonspecific interactions and challenges, such as development of immune complexes, batch-to-batch variability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!