Protein aggregation into insoluble inclusions is a hallmark of a variety of human diseases, many of which are age-related. The nematode Caenorhabditis elegans is a well-established model organism that has been widely used in the field to study protein aggregation and toxicity. Its optical transparency enables the direct visualization of protein aggregation by fluorescence microscopy. Moreover, the fast reproductive cycle and short lifespan make the nematode a suitable model to screen for genes and molecules that modulate this process. However, the quantification of aggregate load in living animals is poorly standardized, typically performed by manual inclusion counting under a fluorescence dissection microscope at a single time point. This approach can result in high variability between observers and limits the understanding of the aggregation process. In contrast, amyloid-like protein aggregation in vitro is routinely monitored by thioflavin T fluorescence in a highly quantitative and time-resolved fashion. Here, an analogous method is presented for the unbiased analysis of aggregation kinetics in living C. elegans, using a high-throughput confocal microscope combined with custom-made image analysis and data fitting. The applicability of this method is demonstrated by monitoring inclusion formation of a fluorescently labeled polyglutamine (polyQ) protein in the body wall muscle cells. The image analysis workflow allows the determination of the numbers of inclusions at different timepoints, which are fitted to a mathematical model based on independent nucleation events in individual muscle cells. The method described here may prove useful to assess the effects of proteostasis factors and potential therapeutics for protein aggregation diseases in a living animal in a robust and quantitative manner.

Download full-text PDF

Source
http://dx.doi.org/10.3791/63365DOI Listing

Publication Analysis

Top Keywords

protein aggregation
24
aggregation
8
aggregation kinetics
8
inclusion counting
8
caenorhabditis elegans
8
image analysis
8
muscle cells
8
protein
6
monitoring protein
4
kinetics vivo
4

Similar Publications

Artificial enforcement of the unfolded protein response (UPR) reduces disease features in multiple preclinical models of ALS/FTD.

Mol Ther

January 2025

Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA. Electronic address:

Amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress.

View Article and Find Full Text PDF

Comparison of the safety and efficacy of dual antiplatelet therapy versus tenecteplase in patients with minor nondisabling acute ischemic stroke.

Sci Rep

January 2025

Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.

To evaluate the safety and efficacy of dual antiplatelet therapy (DAPT) versus tenecteplase in minor non-disabling acute ischemic stroke. This retrospective observational study utilized data from our stroke database. All consecutive patients with minor non-disabling acute ischemic stroke treated with either DAPT or tenecteplase between January 2020 and June 2023 were included in the analysis.

View Article and Find Full Text PDF

mTOR signalling controls protein aggregation during heat stress and cellular aging in a translation- and Hsf1-independent manner.

J Biol Chem

January 2025

Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Sweden. Electronic address:

The mTOR (mechanistic target of rapamycin) signaling pathway appears central to the aging process as genetic or pharmacological inhibition of mTOR extends lifespan in most eukaryotes tested. While the regulation of protein synthesis by mTOR has been studied in great detail, its impact on protein misfolding and aggregation during stress and aging is less explored. In this study, we identified the mTOR signaling pathway and the linked SEA complex as central nodes of protein aggregation during heat stress and cellular aging, using Saccharomyces cerevisiae as a model organism.

View Article and Find Full Text PDF

Prospects of cowpea protein as an alternative and natural emulsifier for food applications: Effect of pH and oil concentration.

Int J Biol Macromol

January 2025

Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Street Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, Brazil. Electronic address:

In response to the growing need to expand the knowledge base on novel, more sustainable protein sources, this study investigated the effectiveness of cowpea protein concentrate (CPC) as a natural emulsifying agent, examining the relationships between pH (3-11), oil concentration (2-10 %), and emulsion stability. pH and oil concentration significantly impacted droplet size distribution, with uniformity decreasing in the order of pH 9 > pH 11 > pH 7, which was attributed to droplet coalescence and flocculation. As evidenced by circular dichroism, alkalinity induced a slight increase in the beta-sheet content of CPC, while simultaneously reducing the alpha-helix content.

View Article and Find Full Text PDF

Stability of complex biotherapeutics like monoclonal antibodies is paramount for their safe and efficacious use. Excipients are inactive ingredients that are added to the purified product so as to offer it a stable environment. Trehalose dihydrate is a non-reducing sugar that is commonly used as a stabilizing agent in biotherapeutic formulations under liquid and frozen states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!