Kinetics and Mechanism of Fentanyl Dissociation from the μ-Opioid Receptor.

JACS Au

Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States.

Published: December 2021

Driven by illicit fentanyl, opioid related deaths have reached the highest level in 2020. Currently, an opioid overdose is resuscitated by the use of naloxone, which competitively binds and antagonizes the μ-opioid receptor (mOR). Thus, knowledge of the residence times of opioids at mOR and the unbinding mechanisms is valuable for assessing the effectiveness of naloxone. In the present study, we calculate the fentanyl-mOR dissociation time and elucidate the mechanism by applying an enhanced sampling molecular dynamics (MD) technique. Two sets of metadynamics simulations with different initial structures were performed while accounting for the protonation state of the conserved H297, which has been suggested to modulate the ligand-mOR affinity and binding mode. Surprisingly, with the Nδ-protonated H297, fentanyl can descend as much as 10 Å below the level of the conserved D147 before escaping the receptor and has a calculated residence time τ of 38 s. In contrast, with the Nϵ- and doubly protonated H297, the calculated τ are 2.6 and 0.9 s, respectively. Analysis suggests that formation of the piperidine-Hid297 hydrogen bond strengthens the hydrophobic contacts with the transmembrane helix (TM) 6, allowing fentanyl to explore a deep pocket. Considering the experimental τ of ∼4 min for fentanyl and the role of TM6 in mOR activation, the deep insertion mechanism may be biologically relevant. The work paves the way for large-scale computational predictions of opioid dissociation rates to inform evaluation of strategies for opioid overdose reversal. The profound role of the histidine protonation state found here may shift the paradigm in computational studies of ligand-receptor kinetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715493PMC
http://dx.doi.org/10.1021/jacsau.1c00341DOI Listing

Publication Analysis

Top Keywords

μ-opioid receptor
8
opioid overdose
8
protonation state
8
fentanyl
5
kinetics mechanism
4
mechanism fentanyl
4
fentanyl dissociation
4
dissociation μ-opioid
4
receptor driven
4
driven illicit
4

Similar Publications

The P2YR is activated by UDP and UDP glucose and is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2YR antagonists and the crystallographic overlap study between PPTN and compound , a series of 3-substituted 5-amidobenzoate derivatives were designed, synthesized, and identified as promising P2YR antagonists. The optimal compound (methyl 3-(1-benzo[]imidazol-2-yl)-5-(2-(-tolyl) acetamido)benzoate, IC = 0.

View Article and Find Full Text PDF

Background: Monoclonal antibodies targeting calcitonin gene-related peptide (CGRP) or the CGRP-receptor have revolutionized the prevention of migraine. Despite their effectiveness, worries have surfaced regarding potential unwanted cardiovascular effects linked to the vasodilation function of CGRP, suggesting a potential influence on blood pressure (BP).

Methods: Studies were systematically retrieved from PubMed, Cochrane Database of Systematic Reviews, Web of Science, MEDLINE and EMBASE up to 1 May 2024.

View Article and Find Full Text PDF

Rare malignant ovarian tumors: a review.

Jpn J Clin Oncol

January 2025

Department of Gynecology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.

There are many histologic types of gynecologic malignancies. I reviewed three rare ovarian tumor types that have poor prognoses. Ovarian mesonephric-like adenocarcinoma (MLA) is a newly described histological type known for its aggressive behavior.

View Article and Find Full Text PDF

Flotillins in membrane trafficking and physiopathology.

Biol Cell

January 2025

CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), BIOLuM, University of Montpellier, CNRS UMR 5237, Montpellier, France.

Flotillin 1 and 2 are highly conserved and homologous members of the stomatin, prohibitin, flotillin, HflK/C (SPFH) family. These ubiquitous proteins assemble into hetero-oligomers at the cytoplasmic membrane in sphingolipid-enriched domains. Flotillins play crucial roles in various cellular processes, likely by concentrating sphingosine.

View Article and Find Full Text PDF

Introduction: Angioimmunoblastic T-cell lymphoma (AITL) is a rare and aggressive lymphoma with a poor prognosis. AITL is associated with Epstein-Barr virus (EBV)-positive B cells in most cases, suggesting a possible role for the virus in the pathobiology of AITL. Cell lines from AITL patients do not exist and models of human AITL are needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!