CRISPR/Cas-based genome editing technologies have the potential to fast-track large-scale crop breeding programs. However, the rigid cell wall limits the delivery of CRISPR/Cas components into plant cells, decreasing genome editing efficiency. Established methods, such as -mediated or biolistic transformation have been used to integrate genetic cassettes containing CRISPR components into the plant genome. Although efficient, these methods pose several problems, including 1) The transformation process requires laborious and time-consuming tissue culture and regeneration steps; 2) many crop species and elite varieties are recalcitrant to transformation; 3) The segregation of transgenes in vegetatively propagated or highly heterozygous crops, such as pineapple, is either difficult or impossible; and 4) The production of a genetically modified first generation can lead to public controversy and onerous government regulations. The development of transgene-free genome editing technologies can address many problems associated with transgenic-based approaches. Transgene-free genome editing have been achieved through the delivery of preassembled CRISPR/Cas ribonucleoproteins, although its application is limited. The use of viral vectors for delivery of CRISPR/Cas components has recently emerged as a powerful alternative but it requires further exploration. In this review, we discuss the different strategies, principles, applications, and future directions of transgene-free genome editing methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715957 | PMC |
http://dx.doi.org/10.3389/fgeed.2021.817279 | DOI Listing |
Genomics Proteomics Bioinformatics
January 2025
Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.
Tumor-specific antigens, also known as neoantigens, have potential utility in anti-cancer immunotherapy, including immune checkpoint blockade (ICB), neoantigen-specific T cell receptor-engineered T (TCR-T), chimeric antigen receptor T (CAR-T), and therapeutic cancer vaccines (TCVs). After recognizing presented neoantigens, the immune system becomes activated and triggers the death of tumor cells. Neoantigens may be derived from multiple origins, including somatic mutations (single nucleotide variants, insertion/deletions, and gene fusions), circular RNAs, alternative splicing, RNA editing, and polymorphic microbiome.
View Article and Find Full Text PDFFASEB J
January 2025
Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
DFNA1 (deafness, nonsyndromic autosomal dominant 1), initially identified as nonsyndromic sensorineural hearing loss, has been associated with an additional symptom: macrothrombocytopenia. However, the timing of the onset of hearing loss (HL) and thrombocytopenia has not been investigated, leaving it unclear which occurs earlier. Here, we generated a knock-in (KI) DFNA1 mouse model, diaphanous-related formin 1 (DIA1), in which Aequorea coerulescens green fluorescent protein (AcGFP)-tagged human DIA1(p.
View Article and Find Full Text PDFChem Asian J
January 2025
Indian Institute of Science, Inorganic and Physical Chemistry, Indian Institute of Science, 560 012, Bangalore, INDIA.
Intracellular delivery of proteins is an important barrier in the development of strategies to deliver functional proteins and protein therapeutics into the cells to realize their full potential in biotechnology, biomedicine, cell-based therapies, and gene editing protein systems. Most of the intracellular protein delivery strategies involve the conjugation of cell penetrating peptides to enable and enhance the permeability of plasma membrane of mammalian cells to allow proteins to enter cytosol. Small molecules conjugations such as (p-methylphenyl) glycine, pyrenebutyrate and cysteines are used for the same purpose.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Bellagen Biotechnology Co. Ltd; School of Life Sciences, Shandong Normal University;
The conventional approaches to crop breeding, which rely predominantly on time-consuming and labor-intensive methods such as traditional hybridization and mutation breeding, face challenges in efficiently introducing targeted traits and generating diverse plant populations. Conversely, the emergence of genome editing technologies has ushered in a paradigm shift, enabling the precise and expedited manipulation of plant genomes to intentionally introduce desired characteristics. One of the most widespread editing tools is the CRISPR/Cas system, which has been used by researchers to study important biology-related problems.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Biotechnology Research Institute, Chinese Academy of Agriculture Sciences, Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!