P-glycoprotein inhibitors, like zosuquidar, have widely been used to study the role of P-glycoprotein in oral absorption. Still, systematic studies on the inhibitor dose-response relationship on intestinal drug permeation are lacking. In the present study, we investigated the effect of 0.79 nM-2.5 μM zosuquidar on etoposide permeability across Caco-2 cell monolayers. We also investigated etoposide pharmacokinetics after oral or IV administration to Sprague Dawley rats with co-administration of 0.063-63 mg/kg zosuquidar, as well as the pharmacokinetics of zosuquidar itself. Oral zosuquidar bioavailability was 2.6-4.2%, while oral etoposide bioavailability was 5.5 ± 0.9%, which increased with increasing zosuquidar doses to 35 ± 5%. The intestinal zosuquidar concentration required to induce a half-maximal increase in bioavailability was estimated to 180 μM. In contrast, the IC of zosuquidar on etoposide permeability was only 5-10 nM, and a substantial discrepancy of at least four orders of magnitude was thereby identified. Overall, the present study provides valuable insights for future formulation development that applies fixed dose combinations of P-glycoprotein inhibitors to increase the absorption of poorly permeable P-glycoprotein substrate drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683663 | PMC |
http://dx.doi.org/10.1016/j.ijpx.2021.100089 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
December 2024
Internal Medicine IX - Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
Zosuquidar (LY335979) is a widely used experimental P-glycoprotein (P-gp) inhibitor, which is commended as very potent but also as very specific for P-gp. In this in vitro and in silico study, we demonstrated for the first time that zosuquidar also inhibits organic cation transporters (OCT) 1-3, albeit less potently than P-gp. This still has to be kept in mind when zosuquidar is used to inhibit cellular efflux of P-gp substrates that are concurrently transported into the cells by OCTs.
View Article and Find Full Text PDFMolecules
October 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
EJNMMI Res
September 2024
Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Kussmaulallee 10/12, 91054, Erlangen, Germany.
Background: The orexin receptor (OXR) plays a role in drug addiction and is aberrantly expressed in colorectal tumors. Subtype-selective OXR PET ligands suitable for in vivo use have not yet been reported. This work reports the development of F-labeled OXR PET ligand candidates derived from the OXR antagonist suvorexant and the OX1R-selective antagonist JH112.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
The intracellular distribution and transportation process are essential for maintaining PD-L1 (programmed death-ligand 1) expression, and intervening in this cellular process may provide promising therapeutic strategies. Here, through a cell-based high content screening, it is found that the ABCB1 (ATP binding cassette subfamily B member 1) modulator zosuquidar dramatically suppresses PD-L1 expression by triggering its autophagic degradation. Mechanistically, ABCB1 interacts with PD-L1 and impairs COP II-mediated PD-L1 transport from ER (endoplasmic reticulum) to Golgi apparatus.
View Article and Find Full Text PDFProtein Sci
September 2024
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Human P-glycoprotein (P-gp) utilizes energy from ATP hydrolysis for the efflux of chemically dissimilar amphipathic small molecules and plays an important role in the development of resistance to chemotherapeutic agents in most cancers. Efforts to overcome drug resistance have focused on inhibiting P-gp-mediated drug efflux. Understanding the features distinguishing P-gp inhibitors from substrates is critical.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!