A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting preeclampsia and related risk factors using data mining approaches: A cross-sectional study. | LitMetric

Background: Preeclampsia is a type of pregnancy hypertension disorder that has adverse effects on both the mother and the fetus. Despite recent advances in the etiology of preeclampsia, no adequate clinical screening tests have been identified to diagnose the disorder.

Objective: We aimed to provide a model based on data mining approaches that can be used as a screening tool to identify patients with this syndrome and also to identify the risk factors associated with it.

Materials And Methods: The data used to perform this cross-sectional study were extracted from the clinical records of 726 mothers with preeclampsia and 726 mothers without preeclampsia who were referred to Fatemieh Hospital in Hamadan City during April 2005-March 2015. In this study, six data mining methods were adopted, including logistic regression, k-nearest neighborhood, C5.0 decision tree, discriminant analysis, random forest, and support vector machine, and their performance was compared using the criteria of accuracy, sensitivity, and specificity.

Results: Underlying condition, age, pregnancy season and the number of pregnancies were the most important risk factors for diagnosing preeclampsia. The accuracy of the models were as follows: logistic regression (0.713), k-nearest neighborhood (0.742), C5.0 decision tree (0.788), discriminant analysis (0.687), random forest (0.758) and support vector machine (0.791).

Conclusion: Among the data mining methods employed in this study, support vector machine was the most accurate in predicting preeclampsia. Therefore, this model can be considered as a screening tool to diagnose this disorder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717074PMC
http://dx.doi.org/10.18502/ijrm.v19i11.9911DOI Listing

Publication Analysis

Top Keywords

data mining
16
risk factors
12
support vector
12
vector machine
12
predicting preeclampsia
8
mining approaches
8
cross-sectional study
8
screening tool
8
726 mothers
8
mothers preeclampsia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!