The novel coronavirus 19 (COVID-19) continues to have a devastating effect around the globe, leading many scientists and clinicians to actively seek to develop new techniques to assist with the tackling of this disease. Modern machine learning methods have shown promise in their adoption to assist the healthcare industry through their data and analytics-driven decision making, inspiring researchers to develop new angles to fight the virus. In this paper, we aim to develop a CNN-based method for the detection of COVID-19 by utilizing patients' chest X-ray images. Developing upon the inclusion of convolutional units, the proposed method makes use of indirect supervision based on Grad-CAM. This technique is used in the training process where Grad-CAM's attention heatmaps support the network's predictions. Despite recent progress, scarcity of data has thus far limited the development of a robust solution. We extend upon existing work by combining publicly available data across 5 different sources and carefully annotate the comprising images across three categories: normal, pneumonia, and COVID-19. To achieve a high classification accuracy, we propose a training pipeline based on indirect supervision of traditional classification networks, where the guidance is directed by an external algorithm. With this method, we observed that the widely used, standard networks can achieve an accuracy comparable to tailor-made models, specifically for COVID-19, with one network in particular, VGG-16, outperforming the best of the tailor-made models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8712713PMC
http://dx.doi.org/10.1016/j.imu.2021.100835DOI Listing

Publication Analysis

Top Keywords

indirect supervision
12
tailor-made models
8
covid-19
5
supervision applied
4
applied covid-19
4
covid-19 pneumonia
4
pneumonia classification
4
classification novel
4
novel coronavirus
4
coronavirus covid-19
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!