Extensive clinical data from liver-mediated gene therapy trials have shown that dose-dependent immune responses against the vector capsid may impair or even preclude transgene expression if not managed successfully with prompt immune suppression. The goal of this preclinical study was to generate an adeno-associated viral (AAV) vector capable of expressing therapeutic levels of B-domain deleted factor VIII (FVIII) at the lowest possible vector dose to minimize the potential Risk of a capsid-mediated immune response in the clinical setting. Here, we describe the studies that identified the investigational agent , currently being evaluated in a phase 1/2 study (NCT03003533) in individuals with hemophilia A. In particular, the potency of our second-generation expression cassettes was evaluated in mice and in non-human primates using two different bioengineered capsids (AAV-Spark100 and AAV-Spark200). At 2 weeks after gene transfer, primates transduced with 2 × 10 vg/kg AAV-Spark100-FVIII or AAV-Spark200-FVIII expressed FVIII antigen levels of 13% ± 2% and 22% ± 6% of normal, respectively. Collectively, these preclinical results validate the feasibility of lowering the AAV capsid dose for a gene-based therapeutic approach for hemophilia A to a dose level orders of magnitude lower than the first-generation vectors in the clinic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8666598 | PMC |
http://dx.doi.org/10.1016/j.omtm.2021.11.005 | DOI Listing |
Commun Med (Lond)
January 2025
Dyne Therapeutics Inc, Waltham, MA, USA.
Background: We developed the FORCE platform to overcome limitations of oligonucleotide delivery to muscle and enable their applicability to neuromuscular disorders. The platform consists of an antigen-binding fragment, highly specific for the human transferrin receptor 1 (TfR1), conjugated to an oligonucleotide via a cleavable valine-citrulline linker. Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by expanded CUG triplets in the DMPK RNA, which sequester splicing proteins in the nucleus, lead to spliceopathy, and drive disease progression.
View Article and Find Full Text PDFImmersive virtual reality (VR) environments are a powerful tool to explore cognitive processes ranging from memory and navigation to visual processing and decision making-and to do so in a naturalistic yet controlled setting. As such, they have been employed across different species, and by a diverse range of research groups. Unfortunately, designing and implementing behavioral tasks in such environments often proves complicated.
View Article and Find Full Text PDFJ Virol
January 2025
Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
The common cold coronaviruses are a source of ongoing morbidity and mortality particularly among elderly and immunocompromised individuals. While cross-reactive immune responses against multiple coronaviruses have been described following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination, it remains unclear if these confer any degree of cross-protection against the common cold coronaviruses. A recombinant fowl adenovirus vaccine expressing the SARS-CoV-2 spike protein (FAdV-9-S19) was generated, and protection from SARS-CoV-2 challenge was shown in K18-hACE2 mice.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America.
Genomic imprinting is an epigenetic process that results in parent-of-origin effects on mammalian development and growth. Research on genomic imprinting in domesticated animals has lagged due to a primary focus on orthologs of mouse and human imprinted genes. This emphasis has limited the discovery of imprinted genes specific to livestock.
View Article and Find Full Text PDFMol Neurodegener
January 2025
Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.
Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!