Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) has been reported to be dysregulated in a variety of cancers and seems to play paradoxical roles in different cancers. However, the functional roles of CPEB4 in Renal cell carcinoma (RCC) are still unclear. This study aims to explore the role and underlying mechanism of CPEB4 in RCC. We found that the relative expression level of CPEB4 is down-regulated in RCC tissues and cell lines, and the low CPEB4 expression is correlated with short overall and disease-free survival of RCC patients. CPEB4 significantly inhibits RCC tumor growth both and . CPEB4 exerts an anti-tumor effect by increasing p21 mRNA stability and inducing G1 cell cycle arrest in RCC. Our data revealed that CPEB4 is a tumor suppressor gene that restrains cell cycle progression upstream of p21 in RCC. These findings revealed that CPEB4 may become a promising predictive biomarker for prognosis in patients with RCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8716440PMC
http://dx.doi.org/10.3389/fcell.2021.687253DOI Listing

Publication Analysis

Top Keywords

cpeb4
10
p21 mrna
8
mrna stability
8
renal cell
8
cell carcinoma
8
rcc
8
cell cycle
8
revealed cpeb4
8
cell
6
cpeb4 inhibit
4

Similar Publications

, an active component of Arnebia euchroma (Royle) Johnst., has remarkable pharmacological effects, particularly in its anti-tumour activity. Nonetheless, the specific targets and mechanisms of action remain to be further explored.

View Article and Find Full Text PDF

Quantifying the mechanical response of the biological milieu (such as the cell's interior) and complex fluids (such as biomolecular condensates) would enable a better understanding of cellular differentiation and aging and accelerate drug discovery. Here we present time-shared optical tweezer microrheology to determine the frequency- and age-dependent viscoelastic properties of biological materials. Our approach involves splitting a single laser beam into two near-instantaneous time-shared optical traps to carry out simultaneous force and displacement measurements and quantify the mechanical properties ranging from millipascals to kilopascals across five decades of frequency.

View Article and Find Full Text PDF
Article Synopsis
  • - Alternative splicing includes microexons in neuronal proteins, which are often linked to neurodevelopmental disorders, including autism spectrum disorder (ASD).
  • - A specific 24-nucleotide microexon in the RNA-binding protein CPEB4, previously shown to be less included in individuals with ASD, plays a critical role in regulating gene expression linked to neurodevelopment.
  • - The study finds that this microexon helps maintain the flexible regulation of CPEB4 during neuronal activation by preventing its aggregation, allowing it to switch from repressing to activating translation of genes.
View Article and Find Full Text PDF

The immune system plays a critical role in inflammation by initiating responses to infections or tissue damage. The nuclear factor-κB (NF-κB) pathway plays a key role in inflammation and innate immunity, as well as other cellular activities. Dysregulation of this well-choreographed pathway has been implicated in various diseases, including cancer.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the effects of metabolite supplementation, specifically choline and follistatin, during in vitro maturation (IVM) of bovine oocytes on blastocyst quality.
  • It hypothesizes that combining choline with follistatin will enhance oocyte quality and early embryonic development, leading to improved outcomes.
  • Initial findings suggest that while choline at high concentrations positively influences blastocyst quality, the interaction with follistatin requires further research to fully understand its impact on embryonic and fetal development.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!