Fusion of Chitin-Binding Domain From SYBC-H1 to the Leaf-Branch Compost Cutinase for Enhanced PET Hydrolysis.

Front Bioeng Biotechnol

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.

Published: December 2021

Polyethylene terephthalate (PET) is a mass-produced petroleum-based non-biodegradable plastic that contributes to the global plastic pollution. Recently, biocatalytic degradation has emerged as a viable recycling approach for PET waste, especially with thermophilic polyester hydrolases such as a cutinase (LCC) isolated from a leaf-branch compost metagenome and its variants. To improve the enzymatic PET hydrolysis performance, we fused a chitin-binding domain (ChBD) from SYBC-H1 to the C-terminus of the previously reported LCC variant, demonstrating higher adsorption to PET substrates and, as a result, improved degradation performance by up to 19.6% compared to with its precursor enzyme without the binding module. For compare hydrolysis with different binding module, the catalytic activity of LCC-ChBD, LCC-CBM, LCC-PBM and LCC-HFB4 were further investigated with PET substrates of various crystallinity and it showed measurable activity on high crystalline PET with 40% crystallinity. These results indicated that fusing a polymer-binding module to LCC is a promising method stimulating the enzymatic hydrolysis of PET.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715031PMC
http://dx.doi.org/10.3389/fbioe.2021.762854DOI Listing

Publication Analysis

Top Keywords

chitin-binding domain
8
leaf-branch compost
8
pet
8
pet hydrolysis
8
pet substrates
8
binding module
8
fusion chitin-binding
4
domain sybc-h1
4
sybc-h1 leaf-branch
4
compost cutinase
4

Similar Publications

The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids.

View Article and Find Full Text PDF

Carbohydrate-binding modules (CBMs) are essential virulence factors in phytopathogens, particularly the extensively studied members from the CBM50 gene family, which are known as lysin motif (LysM) effectors and which play crucial roles in plant-pathogen interactions. However, the function of CBM50 in has yet to be fully studied. In this study, we identified seven CBM50 genes from the genome through complete sequence analysis and functional annotation.

View Article and Find Full Text PDF

A chitin-binding domain-containing gene is essential for shell development in the mollusc Tritia.

Dev Biol

December 2024

University of Rochester, Hutchison Hall, River Campus, Rochester, NY, 14627, USA. Electronic address:

Mollusc shells are diverse in shape and size. They are created by a shell epithelium which secretes a chitinous periostracum membrane at the growing edge of the shell, and then coordinates biomineral deposition on the underside of this membrane. Although mollusc shells are important for studying the evolution of morphology, the molecular basis of the shell development is poorly understood.

View Article and Find Full Text PDF

Unveiling the structural and functional perspectives of a bifunctional α-l-arabinofuranosidase/endo-β-1,4-xylanase (BoGH43_35) from Bacteroides ovatus.

Arch Biochem Biophys

November 2024

Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India. Electronic address:

Article Synopsis
  • - Arabinoxylan, a complex sugar, can be broken down by enzymes like α-l-arabinofuranosidase and xylanase; a new bifunctional enzyme (BoGH43_35) from Bacteroides ovatus has been studied for its ability to degrade these sugars.
  • - The enzyme's structure features a stable 5-bladed β-propeller fold and carbohydrate-binding modules, with molecular dynamics confirming its compactness and stability during simulations.
  • - Binding affinity analysis showed BoGH43_35 has the strongest interaction with arabinose and maintains stability in its complex forms, along with measurements suggesting good solubility and low aggregation in solution.
View Article and Find Full Text PDF

Carbohydrate-binding module could integrate with ELISA and serve the simple and specific quantification of hyaluronic acid.

Int J Biol Macromol

December 2024

College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.

Quantification is essential in the research and development of polysaccharides. However, achieving simplicity and specificity in polysaccharide quantification remains a challenging task. Enzyme-linked immunosorbent assay (ELISA) based on antibodies provides a straightforward and specific quantification strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!