Modeling approaches for probing cross-feeding interactions in the human gut microbiome.

Comput Struct Biotechnol J

Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.

Published: December 2021

AI Article Synopsis

  • Microbial communities, like those in the gut, exhibit collective activities that differ from those of individual microbes, significantly affecting host health and disease.
  • Food components influence these communities through processes such as fermentation and cross-feeding of metabolites.
  • Mathematical and experimental methods are used to analyze microbial interactions, particularly focusing on short-chain fatty acids and fiber fermentation, which are crucial for human well-being, while also exploring challenges in applying these models.

Article Abstract

Microbial communities perform emergent activities that are essentially different from those carried by their individual members. The gut microbiome and its metabolites have a significant impact on the host, contributing to homeostasis or disease. Food molecules shape this community, being fermented through cross-feeding interactions of metabolites such as lactate, acetate, and amino acids, or products derived from macromolecule degradation. Mathematical and experimental approaches have been applied to understand and predict the interactions between microorganisms in complex communities such as the gut microbiota. Rational and mechanistic understanding of microbial interactions is essential to exploit their metabolic activities and identify keystone taxa and metabolites. The latter could be used in turn to modulate or replicate the metabolic behavior of the community in different contexts. This review aims to highlight recent experimental and modeling approaches for studying cross-feeding interactions within the gut microbiome. We focus on short-chain fatty acid production and fiber fermentation, which are fundamental processes in human health and disease. Special attention is paid to modeling approaches, particularly kinetic and genome-scale stoichiometric models of metabolism, to integrate experimental data under different diet and health conditions. Finally, we discuss limitations and challenges for the broad application of these modeling approaches and their experimental verification for improving our understanding of the mechanisms of microbial interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8685919PMC
http://dx.doi.org/10.1016/j.csbj.2021.12.006DOI Listing

Publication Analysis

Top Keywords

modeling approaches
16
cross-feeding interactions
12
gut microbiome
12
microbial interactions
8
interactions
6
modeling
4
approaches probing
4
probing cross-feeding
4
interactions human
4
gut
4

Similar Publications

Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.

View Article and Find Full Text PDF

Background: Forecasting future public pharmaceutical expenditure is a challenge for healthcare payers, particularly owing to the unpredictability of new market introductions and their economic impact. No best-practice forecasting methods have been established so far. The literature distinguishes between the top-down approach, based on historical trends, and the bottom-up approach, using a combination of historical and horizon scanning data.

View Article and Find Full Text PDF

Introduction: The objective of this study is to compare the 5 year overall survival of patients with stage I-III colon cancer treated by laparoscopic colectomy versus open colectomy.

Methods: Using Mecklenburg-Western Pomerania Cancer Registry data from 2008 to 2018, we will emulate a phase III, multicenter, open-label, two-parallel-arm hypothetical target trial in adult patients with stage I-III colon cancer who received laparoscopic or open colectomy as an elective treatment. An inverse-probability weighted Royston‒Parmar parametric survival model (RPpsm) will be used to estimate the hazard ratio of laparoscopic versus open surgery after confounding factors are balanced between the two treatment arms.

View Article and Find Full Text PDF

Automatic 4D mitral valve segmentation from transesophageal echocardiography: a semi-supervised learning approach.

Med Biol Eng Comput

January 2025

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

Performing automatic and standardized 4D TEE segmentation and mitral valve analysis is challenging due to the limitations of echocardiography and the scarcity of manually annotated 4D images. This work proposes a semi-supervised training strategy using pseudo labelling for MV segmentation in 4D TEE; it employs a Teacher-Student framework to ensure reliable pseudo-label generation. 120 4D TEE recordings from 60 candidates for MV repair are used.

View Article and Find Full Text PDF

Phenomic selection based on parental spectra can be used to predict GCA and SCA in a sparse factorial design. Prediction approaches such as genomic selection can be game changers in hybrid breeding. They allow predicting the genetic values of hybrids without the need for their physical production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!