The study describes an analytical model of laser beam scattering on an inhomogeneous ensemble of erythrocytes. The model takes into account erythrocyte variation in size, shape, and spatial orientation. A relationship is established between an experimentally determined parameter: visibility of the diffraction pattern, and a characteristic serving as a measure of inhomogeneity of erythrocyte size and shape in a blood specimen. This relationship is shown to be monotonous, which means that erythrocyte variation in size and shape can be assessed based on measurements of the diffraction pattern visibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8710140PMC
http://dx.doi.org/10.1134/S0030400X21070122DOI Listing

Publication Analysis

Top Keywords

size shape
12
laser beam
8
erythrocyte variation
8
variation size
8
diffraction pattern
8
scattering laser
4
beam ensemble
4
ensemble asymmetrical
4
asymmetrical erythrocytes
4
erythrocytes study
4

Similar Publications

Ion mobility spectrometry and ion mobility-mass spectrometry in clinical chemistry.

Adv Clin Chem

January 2025

Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States. Electronic address:

Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges.

View Article and Find Full Text PDF

This study aimed to produce a novel resistant maltodextrin (RMD) from the remaining starch in cassava pulp via pyrodextrinization and enzymatic hydrolysis. The optimum conditions involved a temperature of 180 °C, 0.5 % HCl, and a reaction time of 5 h, resulting in a significant RMD yield (18.

View Article and Find Full Text PDF

Micro-and-nano plastics (MNPs) are pervasive in terrestrial ecosystems and represent an increasing threat to plant health; however, the mechanisms underlying their phytotoxicity remain inadequately understood. MNPs can infiltrate plants through roots or leaves, causing a range of toxic effects, including inhibiting water and nutrient uptake, reducing seed germination rates, and impeding photosynthesis, resulting in oxidative damage within the plant system. The effects of MNPs are complex and influenced by various factors including size, shape, functional groups, and concentration.

View Article and Find Full Text PDF

Stress-induced plant volatiles play an important role in mediating ecological interactions between plants and their environment. The timing and location of the inflicted damage is known to influence the quality and quantity of induced volatile emissions. However, how leaf characteristics and herbivore feeding behaviour interact to shape volatile emissions is not well understood.

View Article and Find Full Text PDF

Comparative finite element analysis involves standardising aspects of models to test equivalent loading scenarios across species. However, regarding feeding biomechanics of the vertebrate skull, what is considered "equivalent" can depend on the hypothesis. Using 13 diversely-shaped skulls of marsupial bettongs and potoroos (Potoroidae), we demonstrate that scaling muscle forces to standardise specific aspects of biting mechanics can produce clearly opposing comparisons of stress or strain that are differentially suited to address specific kinds of hypotheses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!