The formation of magnetosomes inside magnetotactic bacteria is a complex process strictly controlled by the intracellular metabolic regulatory system. A series of transcriptional regulators are involved in the biosynthesis of the magnetosome, including OxyR-Like protein, which is indispensable for the maturation of magnetosomes in MSR-1. In this study, a new function of the OxyR-Like protein that helps cells resist reactive oxygen species (ROS) was identified. A comparison of expression profile data between wild-type MSR-1 and an defective mutant demonstrated that seven genes encoding chemotaxis proteins were down-regulated in the latter. On the contrary, the expression levels of numerous genes encoding proteins that are critical for cellular aerobic respiration were up-regulated. Thus, OxyR-Like enhanced the resistance of cells to ROS by increasing their environmental perception and maintaining their oxidative phosphorylation at a reasonable level to avoid the excessive production of endogenous ROS. These results increase our knowledge of the OxyR-Like regulatory network and establish a relationship between the antioxidant metabolic pathway and magnetosome biomineralization in MSR-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jbn.2021.3205 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!