AI Article Synopsis

Article Abstract

The thermodynamic description of the fcc phase in the Al-Cu system has been revised, allowing for the prediction of metastable fcc/liquid phase equilibria to undercoolings of Δ = 421 K below the eutectic temperature. Hypoeutectic Al-Cu alloys that are prone to pronounced microsegregation were solidified containerlessly in electromagnetic levitation. Solidus and liquidus concentrations were experimentally determined from highly undercooled samples employing energy-dispersive X-ray analysis. Solid concentrations at a rapidly propagating solid/liquid interface were additionally calculated using a sharp interface model that considers all undercoolings and is based on solvability theory. Modelling results (front velocity versus undercooling) were also corroborated by observation with a high-speed camera. A newly established thermodynamic description of the fcc phase in Al-Cu is compatible with existing CALPHAD-type databases. Inconsistencies of previous descriptions such as a miscibility gap between Al-fcc and Cu-fcc on the Al-rich side, an unrealistic curvature of the solidus line in the same composition range or an azeotropic point near the melting point of Cu, are amended in the new description. The procedure to establish the description of phase equilibria at high undercoolings can be transferred to other alloy systems and is of a general nature. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2020.0327DOI Listing

Publication Analysis

Top Keywords

thermodynamic description
12
phase equilibria
12
metastable fcc/liquid
8
fcc/liquid phase
8
al-cu alloys
8
description fcc
8
fcc phase
8
phase al-cu
8
phase
5
description metastable
4

Similar Publications

Corresponding-states framework for classical and quantum fluids-Beyond Feynman-Hibbs.

J Chem Phys

January 2025

Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany.

Effective potential methods, obtained by applying a quantum correction to a classical pair potential, are widely used for describing the thermophysical properties of fluids with mild nuclear quantum effects. In case of strong nuclear quantum effects, such as for liquid hydrogen and helium, the accuracy of these quantum corrections deteriorates significantly, but at present no simple alternatives are available. In this work, we solve this issue by developing a new, three-parameter corresponding-states principle that remains applicable in the regions of the phase diagram where quantum effects become significant.

View Article and Find Full Text PDF

Intracellular liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a fundamental mechanism by which cells compartmentalize their components and perform essential biological functions. Molecular simulations play a crucial role in providing microscopic insights into the physicochemical processes driving this phenomenon. In this study, we systematically compare six state-of-the-art sequence-dependent residue-resolution models to evaluate their performance in reproducing the phase behaviour and material properties of condensates formed by seven variants of the low-complexity domain (LCD) of the hnRNPA1 protein (A1-LCD)-a protein implicated in the pathological liquid-to-solid transition of stress granules.

View Article and Find Full Text PDF

Liquid-liquid phase separation driven by charge heterogeneity.

Commun Phys

December 2024

Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.

Despite the intrinsic charge heterogeneity of proteins plays a crucial role in the liquid-liquid phase separation (LLPS) of a broad variety of protein systems, our understanding of the effects of their electrostatic anisotropy is still in its early stages. We approach this issue by means of a coarse-grained model based on a robust mean-field description that extends the DLVO theory to non-uniformly charged particles. We numerically investigate the effect of surface charge patchiness and net particle charge on varying these features independently and with the use of a few parameters only.

View Article and Find Full Text PDF

This work connects the calorimetric responses of different rubber-resin blends with varying resin contents with their alpha relaxation dynamics. We used differential scanning calorimetry and broadband dielectric spectroscopy to characterize the calorimetric and dielectric responses of styrene-butadiene, polybutadiene, and polyisoprene with different resin contents. To model the results, we used the Gordon-Taylor equation combined with an extension of the Adam-Gibbs approach.

View Article and Find Full Text PDF

Exploring the Thermodynamic Uncertainty Constant: Insights from a Quasi-Ideal Nano-Gas Model.

Entropy (Basel)

November 2024

Department of Physics, Université Libre de Bruxelles (U.L.B.), Campus de la Plaine C.P. 224, Bvd du Triomphe, 1050 Brussels, Belgium.

In previous work, we investigated thermodynamic processes in systems at the mesoscopic level where traditional thermodynamic descriptions (macroscopic or microscopic) may not be fully adequate. The key result is that entropy in such systems does not change continuously, as in macroscopic systems, but rather in discrete steps characterized by the quantization constant β. This quantization reflects the underlying discrete nature of the collision process in low-dimensional systems and the essential role played by thermodynamic fluctuations at this scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!