Lead-halide perovskites are highly promising for various optoelectronic applications, including laser devices. However, fundamental photophysics explaining the coherent-light emission from this material system is so intricate and often the subject of debate. Here, we systematically investigate photoluminescence properties of all-inorganic perovskite microcavity at room temperature and discuss the excited state and the light-matter coupling regime depending on excitation density. Angle-resolved photoluminescence clearly exhibits that the microcavity system shows a transition from weak coupling regime to strong coupling regime, revealing the increase in correlated electron-hole pairs. With pumping fluence above the threshold, the photoluminescence signal shows a lasing behavior with bosonic condensation characteristics, accompanied by long-range phase coherence. The excitation density required for the lasing behavior, however, is found to exceed the Mott density, excluding the exciton as the excited state. These results demonstrate that the polaritonic Bardeen-Cooper-Schrieffer state originates the strong coupling formation and the lasing behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720309 | PMC |
http://dx.doi.org/10.1038/s41377-021-00701-8 | DOI Listing |
Nanophotonics
January 2025
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Sum-frequency generation (SFG) enables the coherent upconversion of electromagnetic signals and plays a significant role in mid-infrared vibrational spectroscopy for molecular analysis. Recent research indicates that plasmonic nanocavities, which confine light to extremely small volumes, can facilitate the detection of vibrational SFG signals from individual molecules by leveraging surface-enhanced Raman scattering combined with mid-infrared laser excitation. In this article, we compute the degree of second order coherence ( (0)) of the upconverted mid-infrared field under realistic parameters and accounting for the anharmonic potential that characterizes vibrational modes of individual molecules.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
Attaining sub-Kelvin temperatures remains technologically challenging and often relies on the scarce resource He, unless employing adiabatic demagnetization refrigeration. Herein, the active coolant typically consists of weakly coupled paramagnetic ions, whose magnetic interaction strengths are comparable in energy to the relevant temperature regime of cooling. Such interactions depend strongly on inter-ion distances, fundamentally hindering the realization of dense coolants for sub-Kelvin refrigeration.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
Recent experiments have shown that exciton transport can be significantly enhanced through hybridization with confined photonic modes in a cavity. The light-matter hybridization generates exciton-polariton (EP) bands, whose group velocity is significantly larger than the excitons. Dissipative mechanisms that affect the constituent states of EPs, such as exciton-phonon coupling and cavity loss, have been observed to reduce the group velocities in experiments.
View Article and Find Full Text PDFACS Photonics
January 2025
Department of Physics, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, Pennsylvania 15218, United States.
We report the canonical properties of the Bose-Einstein condensation of polaritons in the weak coupling regime, seen previously in many low-temperature experiments, at room temperature in a GaAs/AlGaAs structure. These effects include a nonlinear energy shift of the polaritons, showing that they are not noninteracting photons, and dramatic line narrowing due to coherence, giving coherent emission with a spectral width of 0.24 meV at room temperature with no external stabilization.
View Article and Find Full Text PDFPhysiol Rep
January 2025
United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA.
Exercise counters many adverse health effects of consuming a high-fat diet (HFD). However, complex molecular changes that occur in skeletal muscle in response to exercising while consuming a HFD are not yet known. We investigated the interplay between diverse exercise regimes and HFD consumption on the adaptation of skeletal muscle transcriptome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!