Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microbial ammonia oxidation is the initial nitrification step used in biological nitrogen-removal during water treatment processes, and the discovery of complete ammonia-oxidizing (comammox) bacteria added a novel member to this functional group. It is important to identify and understand the predominant microorganisms responsible for ammonium removal in biotechnological process design and optimization. In this study, we used a full-scale bioreactor to treat ammonium in groundwater (9.3 ± 0.5 mg NH-N/L) and investigated the key ammonia-oxidizing prokaryotes present. The groundwater ammonium was stably and efficiently oxidized throughout ∼700 days of bioreactor operation. 16S rRNA gene amplicon sequencing of the bioreactor community showed a high abundance of Nitrospira (12.5-45.9%), with the dominant sequence variant (3.5-37.8%) most closely related to Candidatus Nitrospira nitrosa. Furthermore, analyses of amoA, the marker gene for ammonia oxidation, indicated the presence of two distinct comammox Nitrospira populations, however, the relative abundance of only one of these populations was strongly correlated to ammonia oxidation rates and was robustly expressed. After 380 days of operation copper wires were immersed into the reactor at 0.04-0.06 m/m tank, which caused a gradual abundance increase of one discrete comammox Nitrospira population. However, further increase of the copper dosing (0.08 m/m tank) inverted the most abundant ammonia-oxidizing population to Nitrosomonas sp. These results indicate that comammox Nitrospira were capable of efficient ammonium removal in groundwater without exogenous nutrients, but copper addition can stimulate comammox Nitrospira or lead to dominance of Nitrosomonas depending on dosage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2021.117986 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!