A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrochemical nutrient removal from natural wastewater sources and its impact on water quality. | LitMetric

Electrochemical nutrient removal from natural wastewater sources and its impact on water quality.

Water Res

Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville AR 72701, United States; Department of Chemical Engineering, Pennsylvania State University, 121 Chemical and Biomedical Engineering Building, University Park, PA 16802 United States. Electronic address:

Published: February 2022

In this study, a suite of natural wastewater sources is tested to understand the effects of wastewater composition and source on electrochemically driven nitrogen and phosphorus nutrient removal. Kinetics, electrode behavior, and removal efficiency were evaluated during electrochemical precipitation, whereby a sacrificial magnesium (Mg) anode was used to drive precipitation of ammonium and phosphate. The electrochemical reactor demonstrated fast kinetics in the natural wastewater matrices, removing up to 54% of the phosphate present in natural wastewater within 1 min, with an energy input of only 0.04 kWh.m. After 1 min, phosphate removal followed a zero-order rate law in the 1 min - 30 min range. The zero-order rate constant (k) appears to depend upon differences in wastewater composition, where a faster rate constant is associated with higher Cl and NH concentrations, lower Ca concentrations, and higher organic carbon content. The sacrificial Mg anode showed the lowest corrosion resistance in the natural industrial wastewater source, with an increased corrosion rate (v) of 15.8 mm.y compared to 1.9-3.5 mm.y in municipal wastewater sources, while the Tafel slopes (β) showed a direct correlation with the natural wastewater composition and origin. An overall improvement of water quality was observed where important water quality parameters such as total organic carbon (TOC), total suspended solids (TSS), and turbidity showed a significant decrease. An economic analysis revealed costs based upon experimental Mg consumption are estimated to range from 0.19 $.m to 0.30 $.m, but costs based upon theoretical Mg consumption range from 0.09 $.m to 0.18 $.m. Overall, this study highlights that water chemistry parameters control nutrient recovery, while electrochemical treatment does not directly produce potable water, and that economic analysis should be based upon experimentally-determined Mg consumption data. Synopsis Statement: Magnesium-driven electrochemical precipitation of natural wastewater sources enables fast kinetics for phosphate removal at low energy input.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.118001DOI Listing

Publication Analysis

Top Keywords

natural wastewater
24
wastewater sources
16
water quality
12
wastewater composition
12
wastewater
10
nutrient removal
8
electrochemical precipitation
8
fast kinetics
8
energy input
8
phosphate removal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!