In thermal hydrolysis (TH) of waste activated sludge (WAS), the material transformation of a specific temperature heating for a set duration is generally examined. However, this study looked at the material changes of TH as the temperature rose (90-210 °C) and the kinetic derivation of soluble chemical oxygen demand (SCOD), protein, and carbohydrate using the Coats-Redfern model. It was found that the proportion of soluble protein and soluble carbohydrate in the organic components and their contents reached the maximum (17.39 and 8.10 g L respectively) at 180 °C. Differently, volatile fatty acid (VFA), amino acids, and ammonia nitrogen increased with the TH temperature and reached a maximum at 210 °C. The fitting equations of non-isothermal dynamics at the medium- and low-temperature stages (90-180 °C) at n = 1, 0.5, and 2 were studied. When n = 1, the activation energies of COD, protein, and carbohydrate were 33.32, 23.34, and 36.15 kJ mol, respectively. And the kinetic analysis results were in good agreement with the experimental results (the maximum rate of increase in protein and carbohydrate was at 135-150 °C and 150-180 °C, respectively). Moreover, the pattern of anaerobic digestion performance of WAS was comparable to the trend of protein and carbohydrate in TH, the highest cumulative methane production was 159.68 mL·gVS for the TH sludge at 180 °C. This study provided a theoretical foundation for the use of thermal hydrolysis in engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.114408DOI Listing

Publication Analysis

Top Keywords

protein carbohydrate
16
thermal hydrolysis
12
anaerobic digestion
8
digestion performance
8
reached maximum
8
protein
5
carbohydrate
5
analysis organic
4
organic matter
4
matter conversion
4

Similar Publications

The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.

View Article and Find Full Text PDF

Background And Objectives: While it is well characterized in adults, little is known about the clinical features of neurofascin 155-IgG4 autoimmune nodopathy (NF155-IgG4 AN) in the pediatric population. In this study, we aimed to describe the clinical features and treatment outcomes in children diagnosed with neurofascin 155-IgG4 autoimmune nodopathy (NF155-IgG4 AN).

Methods: Pediatric and adult patients with NF155-IgG4 AN were identified retrospectively through the Mayo Clinic Neuroimmunology Laboratory database.

View Article and Find Full Text PDF

Background: Knowledge about the diet quality among youth who follow different types of plant-based diets is essential to understand whether support is required to ensure a well-planned diet that meets their nutritional needs. This study aimed to investigate how food groups, macronutrient intake, and objective blood measures varied between Norwegian youth following different plant-based diets compared to omnivorous diet.

Methods: Cross-sectional design, with healthy 16-to-24-year-olds (n = 165) recruited from the Agder area in Norway, following a vegan, lacto-ovo-vegetarian, pescatarian, flexitarian or omnivore diet.

View Article and Find Full Text PDF

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) has been considered as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the potential of using OGA inhibition to treat neurodegenerative diseases. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using the OGA inhibitor Thiamet G (TG), in normal mouse brains.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) hold promise to advance targeted therapy of pancreatic ductal adenocarcinoma (PDAC), where the desmoplastic tumor stroma challenges effective treatment. Here, we explored the urokinase plasminogen activator receptor (uPAR) as a candidate ADC target in PDAC, harnessing its massive tumoral and stromal expression in this stroma-dense tumor. We generated a site-specific ADC offering high-affinity, cross-species reactivity, and efficient internalization of the anti-uPAR monoclonal antibody, FL1, carrying a potent anthracycline derivative (PNU-158692).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!