The signaling pathways involved in metabolic regulation and stress responses of the yeast-like fungi Aureobasidium spp.

Biotechnol Adv

College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003, China. Electronic address:

Published: May 2022

Aureobasidium spp. can use a wide range of substrates and are widely distributed in different environments, suggesting that they can sense and response to various extracellular signals and be adapted to different environments. It is true that their pullulan, lipid and liamocin biosynthesis and cell growth are regulated by the cAMP-PKA signaling pathway; Polymalate (PMA) and pullulan biosynthesis is controlled by the Ca and TORC1 signaling pathways; the HOG1 signaling pathway determines high osmotic tolerance and high pullulan and liamocin biosynthesis; the Snf1/Mig1 pathway controls glucose repression on pullulan and liamocin biosynthesis; DHN-melanin biosynthesis and stress resistance are regulated by the CWI signaling pathway and TORC1 signaling pathway. In addition, the HSF1 pathway may control cell growth of some novel strains of A. melanogenum at 37 °C. However, the detailed molecular mechanisms of high temperature growth and thermotolerance of some novel strains of A. melanogenum and glucose derepression in A. melanogenum TN3-1 are still unclear.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2021.107898DOI Listing

Publication Analysis

Top Keywords

signaling pathway
16
liamocin biosynthesis
12
signaling pathways
8
aureobasidium spp
8
cell growth
8
torc1 signaling
8
pullulan liamocin
8
novel strains
8
strains melanogenum
8
signaling
6

Similar Publications

Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.

View Article and Find Full Text PDF

Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.

View Article and Find Full Text PDF

Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.

View Article and Find Full Text PDF

Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a common cerebrovascular disease characterized by a high incidence, disability rate, and mortality. Epigallocatechin gallate (EGCG), a key catechin compound found in green tea, has received increasing attention for its potential neuroprotective and therapeutic effects in neurological disorders. Studies have indicated that EGCG may influence various signaling pathways and molecular targets, including the inhibition of oxidative stress, reduction of inflammatory responses, suppression of cell apoptosis, regulation of cell survival, and enhancement of autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!