Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The chitosan (CS) transparent film has attracted much attention in food and medicine packaging areas due to their biodegradability and good availability. A novel carbon quantum dots compound containing nitrogen and phosphorus (NP-CQDs) was obtained by reacting citric acids, with urea and phytic acids. The density of the film was increased, and the water vapor permeation was reduced by the presence of NP-CQDs. The introduction of 4 wt% NP-CQDs increased the water contact angle of the CS film from 79.2° to 105.8°. The shielding on UV-A and UV-B transmittance was increased with the NP-CQDs loading. The film containing 4 wt% NP-CQDs blocked more than 90.2% UV-A and 96.5% UV-B; however, it only blocked 26.8% visible light. It also exhibited better antibacterial activity to both E. coli and S. aureus than the control CS film. This work provided a feasible way to prepare multifunctional bio-safe film.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2021.118957 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!