The present study focused on the integration of beta-cyclodextrin based metal-organic frameworks (β-CDMOF) with polymer to obtain hybrid materials with advantageous properties compared to traditional single-component polymers or metal-organic frameworks (MOF) matrixes. We fabricated two complexes with different morphology and structure. During the in situ growth of β-CDMOF around the hydrogel, potassium ions on polysaccharides gradually dissociated to participate in the growth of crystals, while other potassium ions on the carboxylic acid groups provided bridges between crystals and hydrogel, forming a necklace-shaped complex (SHPs@β-CDMOF). Hydrogen bonding and coordination interactions between β-CDMOF and hydrogel are present in a dendritic sandwich-shaped complex (β-CDMOF@SHPs). Furthermore, using the hydrophobic molecule curcumin as a model drug, we have demonstrated that SHPs@β-CDMOF and β-CDMOF@SHPs hybrid materials stabilize the included drug and have potential for controlled drug release. Collectively, the integration of MOF with polymer holds a great promise for drug delivery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118915DOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
8
hybrid materials
8
β-cdmof hydrogel
8
potassium ions
8
drug
5
tunable arrangement
4
hydrogel
4
arrangement hydrogel
4
hydrogel cyclodextrin-based
4
cyclodextrin-based metal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!