PLK1 inhibition-based combination therapies for cancer management.

Transl Oncol

Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA; William S. Middleton VA Medical Center, Madison, WI 53705, USA. Electronic address:

Published: February 2022

Polo-like kinase I (PLK1), a cell cycle regulating kinase, has been shown to have oncogenic function in several cancers. Although PLK1 inhibitors, such as BI2536, BI6727 (volasertib) and NMS-1286937 (onvansertib) are generally well-tolerated with a favorable pharmacokinetic profile, clinical successes are limited due to partial responses in cancer patients, especially those in advanced stages. Recently, combination therapies targeting multiple pathways are being tested for cancer management. In this review, we first discuss structure and function of PLK1, role of PLK1 in cancers, PLK1 specific inhibitors, and advantages of using combination therapy versus monotherapy followed by a critical account on PLK1-based combination therapies in cancer treatments, especially highlighting recent advancements and challenges. PLK1 inhibitors in combination with chemotherapy drugs and targeted small molecules have shown superior effects against cancer both in vitro and in vivo. PLK1-based combination therapies have shown increased apoptosis, disrupted cell cycle, and potential to overcome resistance in cancer cells/tissues over monotherapies. Further, with successes in preclinical experiments, researchers are validating such approaches in clinical trials. Although PLK1-based combination therapies have achieved initial success in clinical studies, there are examples where they have failed to improve patient survival. Therefore, further research is needed to identify and validate novel biologically informed co-targets for PLK1-based combinatorial therapies. Employing a network-based analysis, we identified potential PLK1 co-targets that could be examined further. In addition, understanding the mechanisms of synergism between PLK1 inhibitors and other agents may lead to a better approach on which agents to pair with PLK1 inhibition for optimum cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728518PMC
http://dx.doi.org/10.1016/j.tranon.2021.101332DOI Listing

Publication Analysis

Top Keywords

combination therapies
20
plk1 inhibitors
12
plk1-based combination
12
plk1
10
therapies cancer
8
cancer management
8
cell cycle
8
cancers plk1
8
combination
7
cancer
7

Similar Publications

Future Directions in the Treatment of Low-Grade Gliomas.

Cancer J

January 2025

Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL.

There is major interest in deintensifying therapy for isocitrate dehydrogenase-mutant low-grade gliomas, including with single-agent cytostatic isocitrate dehydrogenase inhibitors. These efforts need head-to-head comparisons with proven modalities, such as chemoradiotherapy. Ongoing clinical trials now group tumors by intrinsic molecular subtype, rather than classic clinical risk factors.

View Article and Find Full Text PDF

Purpose: Chemoradiation-induced lymphopenia is common and associated with poorer survival in multiple solid malignancies. However, the association between chemoradiation-related lymphopenia and survival outcomes in rectal cancer is yet unclear. The objective of this study was to evaluate the prognostic impact of lymphopenia and its predictors in patients with rectal cancer undergoing neoadjuvant chemoradiation.

View Article and Find Full Text PDF

Haplotypes of Chloroquine Resistance Marker Genes Among Uncomplicated Malaria Cases in Lagos, Nigeria.

Biochem Genet

January 2025

Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, People's Republic of China.

Drug resistance resulting from mutations in Plasmodium falciparum, that caused the failure of previously effective malaria drugs, has continued to threaten the global malaria elimination goal. This study describes the profiles of P. falciparum chloroquine resistance transporter (Pfcrt) and P.

View Article and Find Full Text PDF

Metabolic reprogramming stands out as a defining characteristic of cancer, including glioblastoma (GB), enabling tumor cells to overcome growth and survival challenges in adverse conditions. The dysregulation of metabolic processes in GB is crucial to its pathogenesis, influencing both tumorigenesis and the disease's invasive tendencies. This altered metabolism supplies essential energy substrates for uncontrolled cell proliferation and also creates an immunosuppressive microenvironment, complicating conventional therapies.

View Article and Find Full Text PDF

BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!