Wafer-scale nanocracks enable single-molecule detection and on-site analysis.

Biosens Bioelectron

Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan; Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, Taiwan. Electronic address:

Published: March 2022

Large-area surface-enhanced Raman spectroscopy (SERS) sensing platforms displaying ultrahigh sensitivity and signal uniformity have potentially enormous sensing applicability, but they are still challenging to prepare in a scalable manner. In this study, silver nanopaste (AgNPA) was employed to prepare a wafer-scale, ultrasensitive SERS substrate. The self-generated, high-density Ag nanocracks (NCKs) with small gaps could be created on Si wafers via a spin-coating process, and provided extremely abundant hotspots for SERS analyses with ultrahigh sensitivity-down to the level of single molecules (enhancement factor: ca. 10; detection limit: ca. 10 M)-and great signal reproducibility (variation: ca. 3.6%). Moreover, the Ag NCK arrays demonstrated broad applicability and practicability for on-site detection when combined with a portable 785 Raman spectrometer. This method allowed the highly sensitive detection of a diverse range of analytes (benzo[a]pyrene, di-2-ethylhexyl phthalate, aflatoxins B1, zearalenone, ractopamine, salbutamol, sildenafil, thiram, dimethoate, and methamidophos). In particular, pesticides are used extensively in agricultural production. Unfortunately, they can affect the environment and human health as a result of acute toxicity. Therefore, the simultaneous label-free detection of three different pesticides was demonstrated. Finally, the SERS substrates are fabricated through a simple, efficient, and scalable process that offers new opportunities for mass production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2021.113920DOI Listing

Publication Analysis

Top Keywords

detection
5
wafer-scale nanocracks
4
nanocracks enable
4
enable single-molecule
4
single-molecule detection
4
detection on-site
4
on-site analysis
4
analysis large-area
4
large-area surface-enhanced
4
surface-enhanced raman
4

Similar Publications

Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A.

Diabetes Metab J

January 2025

NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.

Background: In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.

View Article and Find Full Text PDF

Lane detection is one of the key functions to ensure the safe driving of autonomous vehicles, and it is a challenging task. In real driving scenarios, external factors inevitably interfere with the lane detection system, such as missing lane markings, harsh weather conditions, and vehicle occlusion. To enhance the accuracy and detection speed of lane detection in complex road environments, this paper proposes an end-to-end lane detection model with a pure Transformer architecture, which exhibits excellent detection performance in complex road scenes.

View Article and Find Full Text PDF

Global phylogeography and genetic characterization of carbapenem and ceftazidime-avibactam resistant KPC-33-producing Pseudomonas aeruginosa.

NPJ Antimicrob Resist

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.

Ceftazidime-avibactam (CZA) is currently one of the last resorts used to treat infections caused by carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa. However, KPC variants have become the main mechanism mediating CZA resistance in KPC-producing gram-negative bacteria after increasing the application of CZA. Our previous study revealed that CZA-resistant KPC-33 had emerged in carbapenem-resistant P.

View Article and Find Full Text PDF

Profile and resistance levels of 136 integron resistance genes.

NPJ Antimicrob Resist

October 2023

Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain.

Integrons have played a major role in the rise and spread of multidrug resistance in Gram-negative pathogens and are nowadays commonplace among clinical isolates. These platforms capture, stockpile, and modulate the expression of more than 170 antimicrobial resistance cassettes (ARCs) against most clinically-relevant antibiotics. Despite their importance, our knowledge on their profile and resistance levels is patchy, because data is scattered in the literature, often reported in different genetic backgrounds and sometimes extrapolated from sequence similarity alone.

View Article and Find Full Text PDF

Long noncoding RNA DHRS4 antisense RNA 1 suppresses osteosarcoma cell proliferation and promotes apoptosis through a competitive endogenous RNA mechanism.

Sci Rep

January 2025

Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Central Guangzhou, Guangdong510280, Guangzhou, Guangdong510280, China.

Osteosarcoma (OS) is the most common primary malignant bone tumor. Recent evidence suggests that the novel long noncoding RNA DHRS4 antisense RNA 1 (DHRS4-AS1) serves an important role in cancer progression and metastasis. However, its function and molecular mechanism in OS remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!