Physico-chemical mobility of cells in three dimensions is dependent on the development of filipodia, which is the fundamental instinct for survival and other cellular functions in live cells. Specifically, our present research paper describes the synthesis of 3-Mercaptopropoinc acid (MPA) capped CdSe/ZnS quantum dots (QDs), which are biocompatible and utilized for cellular bioimaging applications. Using the pancreatic cell lines BXCP3 cells, we successfully demonstrated the applicability of MPA-capped QDs for intercellular filopodia imaging. Employing these QDs, we examined the dynamics of filopodia formation in real-time along the Z-axis by using confocal laser microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2021.103200DOI Listing

Publication Analysis

Top Keywords

confocal laser
8
3-mercaptopropoinc acid
8
capped cdse/zns
8
cdse/zns quantum
8
quantum dots
8
laser scanning
4
scanning microscopy
4
microscopy study
4
study intercellular
4
intercellular events
4

Similar Publications

Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.

View Article and Find Full Text PDF

High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.

View Article and Find Full Text PDF

a member of the family, is known for its diverse biological activities, including anti-inflammatory properties. The mechanisms through which polysaccharide (LTP) induces autophagy, however, remain largely unexplored. This study aims to elucidate the role of LTP in autophagy induction and its efficacy in mitigating inflammation within macrophages.

View Article and Find Full Text PDF

The kinetics, oil migration pattern and the role of frying media during immersion frying of '', a dairy dessert, at the microstructural level were studied using confocal laser scanning microscopy (CLSM). After 6 min of frying, the depth of oil migration in increased from 0 to 3.16 mm in clarified butter (locally called '') and 3.

View Article and Find Full Text PDF

Background: Bacteria in physiological environments can generate mineralizing biofilms, which are associated with diseases like periodontitis or kidney stones. Modelling complex environments presents a challenge for the study of mineralization in biofilms. Here, we developed an experimental setup which could be applied to study the fundamental principles behind biofilm mineralization on rigid substrates, using a model organism and in a tailored bioreactor that mimics a humid environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!