Charge-reversal nanoemulsions: A systematic investigation of phosphorylated PEG-based surfactants.

Int J Pharm

Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria. Electronic address:

Published: February 2022

Surfactants bearing monophosphate esters with PEG of increasing chain length and different lipophilic tail structures were investigated to improve the effectiveness of enzyme triggered charge-converting nanoemulsions. The surfactants PEG-8-stearate, PEG-22-tocopheryl succinate (TPGS), PEG-3-oleate, PEG-9-oleate and PEG-9-lauryl ether were phosphorylated and incorporated in a self-emulsifying drug delivery system (SEDDS) exhibiting a defined PEG corona. To provide a positive zeta potential increasing amounts of the cationic surfactant benzalkonium chloride (BA) were incorporated. The effect of these PEG monophosphate esters (P-PEG-surfactants) was evaluated based on enzyme induced phosphate release and change in zeta potential. Significant enzyme induced charge conversion was observed for all P-PEG-surfactants, showing shifts from Δ3 mV to Δ31 mV. Surfactants comprising the shortest and longest PEG chain showed similar amplitudes (P-PEG-3-oleate: Δ11.9 mV; P-PEG-22-TPGS Δ10.2 mV), whereas P-PEG-8-stearate, P-PEG-9-oleate and P-PEG-9-lauryl ether bearing similarly long PEG chains but different lipophilic tail structures resulted in pronounced differences in amplitudes of Δ10.3 mV, Δ14.5 mV and Δ18.1 mV, respectively. Furthermore, an indirect correlation between the lipophilicity of P-PEG-surfactants and the obtained charge-reversing effect was observed. With the exception of P-PEG-lauryl ether, this charge-reversal effect decreased with increasing BA concentrations. In conclusion, the enzyme induced amplitude of charge conversion of P-PEG-surfactants depends to a high extent on their lipophilic tail structure. Based on this knowledge potent charge-reversal nanoemulsions can be designed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.121438DOI Listing

Publication Analysis

Top Keywords

lipophilic tail
12
enzyme induced
12
charge-reversal nanoemulsions
8
monophosphate esters
8
tail structures
8
zeta potential
8
charge conversion
8
peg
5
nanoemulsions systematic
4
systematic investigation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!