A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The interaction of SIRT4 and Calreticulin during ER stress in glia cells. | LitMetric

The interaction of SIRT4 and Calreticulin during ER stress in glia cells.

Gene

Adnan Menderes University, Faculty of Medicine, Department of Medical Biology, Aydin, Turkey. Electronic address:

Published: March 2022

Endoplasmic Reticulum (ER) stress is the response that occurs after the dysfunction of ER and its structure. Activated UPR triggers a stress response using ER membrane proteins such as PERK, IRE-1, GRP78, ATF5 ve ATF6. Sirtuins are enzymes that carry out post-translational modifications such as deacetylation and ADP-ribosylation. In our previous study, we identified Calreticulin as a SIRT4-interacting protein via mass spectrometry. Calreticulin binds to misfolded proteins, prevents them from leaving ER, which results in the reduction of ER stress. In this study, we aimed to investigate the interaction between SIRT4 and Calreticulin during ER stress in glia cells (IHA-immortalized human astrocytes). To trigger ER stress in glia cells, we first optimized the dose and the duration of the Tunicamycin which is 2.5 μg/ml concentration for 16 h. SIRT4 gene was silenced with lentiviral particles using 4 MOI (Multiplicity of Infection). In SIRT4-silenced cells, when treated with 2.5 μg/ml Tunicamycin for 16 h, the increase in the expressions of ATF6, GRP78 and the ratio of spliced/unspliced XBP1 mRNA were reduced. This shows that silencing SIRT4 may decrease ER stress. SIRT4-Calreticulin interaction was shown both in control and ER-stress induced glia cells. Additionally, this interaction did not change with the ER stress. SIRT4 only ADP-ribosylates Calreticulin during ER stress. Normally, SIRT4 ADP-ribosylates and deactivates Calreticulin during ER stress condition. When SIRT4 is silenced, the ADP-ribosylation level of Calreticulin decreases resulting in the activation of Calreticulin and the reduction of ER stress. In summary, SIRT4 inhibitors may be investigated as protective agents or drug candidates in neurodegenerative diseases where ER stress mostly underlies as one of the molecular mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2021.146135DOI Listing

Publication Analysis

Top Keywords

calreticulin stress
16
glia cells
16
stress
12
stress glia
12
interaction sirt4
8
calreticulin
8
sirt4 calreticulin
8
stress response
8
reduction stress
8
stress sirt4
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!