Two membrane bioreactors with and without adding an electric circuit (named as MFC-MBR and C-MBR, respectively) were established to investigate the effects of micro-electric field on membrane fouling. With the aeration rate of 1.5 L/min, the synergistic effect of aeration and micro-electric field was the best in reducing membrane fouling and COD in treatment of a simulated phenol wastewater. Compared with C-MBR, the running time of MFC-MBR was extended for 16 days. Scanning electron microscope (SEM) and energy-dispersive X-ray detector (SEM-EDX) demonstrated that less foulants were attached to the membrane and the attachment was loosend in MFC-MBR. The decreased absolute value of zeta potential indicated repulsion among the negatively-charged sludge particles was reduced and flocculation of the sludge was improved, which alleviated the membrane fouling. The soluble microbial products (SMP) and loosely-bound extracellular polymeric substances (LB-EPS) were also decreased in MFC-MBR. It was found that migration and neutralization of the negatively-charged particles, and degradation of microorganisms contributed to the alleviation of membrane fouling. Moreover, the decreases of carbohydrates in LB-EPS led to higher protein/carbohydrates (PN/PS) ratio, which was a key parameter for alleviating membrane fouling. Meanwhile, the increase of tightly bound extracellular polymeric substances (TB-EPS) could also slow down membrane fouling. Because TB-EPS can be used as a binder to strengthen the flocculation of sludge particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.152569 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!