Most research on extracellular vesicles (EVs) from non-pathogenic fungi has been conducted in S. cerevisiae, taking advantage of the tools available for this model organism; but a few studies on EVs from yeasts of biotechnological interest are also available. Proteomic analyses in EVs from different yeast species and under different culture conditions are consistent in the identification of proteins related to glycolysis and cell wall biogenesis. Consequently, cell wall metabolism and biosynthesis appear as major functions of EVs. Additional functions have been proposed attending to the known biological activities identified on EVs proteomes, including interspecific antagonism, protection against antimicrobial agents, or clearance of aggregates of misfolded proteins (e.g. prion-like proteins). However, caution should be taken since some of these proteins might play a different role in the intracellular space or EVs (including some well known moonlighting proteins). It is also possible that many proteins appear in EVs as an indirect consequence of cellular metabolism and protein traffic, not related to a specific role in the extracellular space. These considerations become especially relevant in the context of the increasing detection power of proteomic technologies, leading in some cases to the identification of thousands of different proteins in the EVs proteome. Mutations in different secretory pathways have been related to differences in protein cargo of EVs, but no mutation has been found completely abolishing the production of EVs. Further work on the composition and biogenesis of EVs is required to better understand their biological significance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-030-83391-6_12 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.
Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.
View Article and Find Full Text PDFAnal Chem
January 2025
The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
Swift and efficient enrichment and isolation of extracellular vesicles (EVs) are crucial for enhancing precise disease diagnostics and therapeutic strategies, as well as elucidating the complex biological roles of EVs. Conventional methods of isolating EVs are often marred by lengthy and laborious processes. In this study, we introduce an innovative approach to enrich and isolate EVs by leveraging the capabilities of DNA nanotechnology.
View Article and Find Full Text PDFJ Biol Eng
January 2025
Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA.
Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Surgical Oncology, Tumor Hospital, The General Hospital of Ningxia Medical University, Ningxia, China. Electronic address:
Gastric cancer (GC) is one of the most common gastrointestinal cancers worldwide, with consistently high morbidity and mortality rates and poor prognosis. Most patients are diagnosed at an advanced stage due to the lack of specific presentation in the early stages. Exosomes are a class of extracellular vesicles (EVs) widely found in body fluids and can release genetic material or multiple proteins to facilitate intercellular communication.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Life Sciences, Chongqing University, Chongqing, 401331, China.
The diverse and dynamic population of microorganisms present in the gut microbiota may affect host health. There are evidences to support the role of gut microbiota as a key player in reproductive development. Unfortunately, the relationship between reproductive disorders caused by aging and gut microbiota remains largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!