Herein, we evaluated a capacitor dosimeter under development by a manufacturer, which is designed to monitor the entrance dose in x-ray diagnosis and comprises a silicon x-ray diode (Si-XD), a 0.1 µF capacitor, and a dosimeter dock. The Si-XD is a high-sensitivity photodiode optimized for x-ray detection. The dosimeter was charged to 3.30 V using the dock before x-ray irradiation. The charging voltage was reduced by photocurrents flowing through the Si-XD during irradiation, and the discharging voltage was measured. For the fundamental characterization of this capacitor dosimeter, we investigated the x-ray tube-current and tube-voltage dependences of the measured dose using an industrial x-ray tube; the angular dependence was also investigated. A commercially available semiconductor dosimeter (RaySafe ThinX) was used for dose calibration. The doses were proportional to the tube current at a constant tube voltage of 100 kV and increased with increasing tube voltage at a constant tube current of 1.0 mA. The dose difference with respect to the commercially available semiconductor dosimeter was within 1.0% when the tube current was varied and it was within 3.0% when the tube voltage was varied. In the angular dependence measurement, a difference of up to 6.0% was observed as the angle varied from 0° to 355° in steps of 5°. The dose-calibration results indicated that the determination of the initial charging voltage was important for dose conversion using the capacitor dosimeter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0061061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!