A 200 kJ electrical gun for hypervelocity launch.

Rev Sci Instrum

Institute of Fluid Physics, CAEP, Mianyang, Sichuan 621999, People's Republic of China.

Published: December 2021

In order to meet the requirements of hypervelocity launch in the context of defending against space debris and deflecting asteroids, an electrical gun with 200 kJ of storage energy was recently built. The electrical gun is composed of 16 gas spark switch-capacitor modules, and pulse current is transmitted by parallel aluminum plates that are insulated by polyester foils. The capacitance, inductance, and resistance of the RLC circuit of the 200 kJ electrical gun are 80 µF, 10.3 nH, and 2.6 mΩ, respectively. It can generate pulse current with a rise time of 1.33 µs and an amplitude of 5.2 MA when short-circuited at a charging voltage of 70 kV. Hypervelocity flyer launch experiments were carried out on the 200 kJ electrical gun, in which a ϕ20 × 0.5 mm Mylar flyer (0.22 g) was accelerated to 10 km/s.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0064003DOI Listing

Publication Analysis

Top Keywords

electrical gun
20
200 electrical
12
hypervelocity launch
8
pulse current
8
gun
5
0
4
gun hypervelocity
4
launch order
4
order meet
4
meet requirements
4

Similar Publications

Introduction: Tau protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) and in regulating neuronal excitability. Among tau-coding microtubule associated protein tau () gene mutations, the A152T mutation is reported to increase the risk of AD and neuronal excitability in mouse models.

Methods: To investigate the effects of gene expression and its mutations on neuronal activity in human neurons, we employed genome editing technology to introduce the A152T or P301S mutations into induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Laser-Induced Phase Control of Morphotropic Phase Boundary Hafnium-Zirconium Oxide.

ACS Appl Mater Interfaces

January 2025

Center for Semiconductor Technology Convergence, Department of Electrical Engineering, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.

A novel approach to delicately control the phase of a ferroelectric has been developed using a continuous-wave laser scanning annealing (CW-LSA) process. After proper process optimization, the equivalent oxide thickness (EOT) of 3.5 Å with a dielectric constant (κ) of 68 Å is achieved from HZO in a metal-ferroelectric-metal (MFM) capacitor structure.

View Article and Find Full Text PDF

A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.

View Article and Find Full Text PDF

With the applications of in situ X-ray diffraction (XRD), electrical - measurement, and ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES), the characteristics of the topotactic phase transition of LaCoO (LCO) thin films are examined. XRD measurements show clear evidence of structural phase transition (SPT) of the LCO thin films from the perovskite (PV) LaCoO to the brownmillerite (BM) LaCoO phases through the intermediate LaCoO phase at a temperature of 350 °C under high-vacuum conditions, ∼10 mbar. The reverse SPT from BM to PV phases is also found under ambient pressure (>100 mbar) of air near 100 °C.

View Article and Find Full Text PDF

Strain engineering provides an attractive approach to enhance device performance by modulating the intrinsic electrical properties of materials. This is especially applicable to 2D materials, which exhibit high sensitivity to mechanical stress. However, conventional methods, such as using polymer substrates, to apply strain have limitations in that the strain is temporary and global.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!