Binder-jetting 3D printer capable of voxel-based control over deposited ink volume, adaptive layer thickness, and selective multi-pass printing.

Rev Sci Instrum

Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.

Published: December 2021

The limited control over the printing process in commercial powder bed 3D printers hinders the exploration of novel materials and applications. In this study, a custom binder-jetting 3D printer was developed. The resulting fine-grained control over the printing process enables features such as voxel-based control over the printed ink volume, adaptive layer thickness, and selective multi-pass printing. A protocol was developed to optimize the 3D printing process for new build materials and binders, in which resolution tests were used as a guideline for improving the dimensional accuracy. As a demonstration of the voxel-based control over the printing process, a functionally graded object was printed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0072715DOI Listing

Publication Analysis

Top Keywords

printing process
16
voxel-based control
12
control printing
12
binder-jetting printer
8
ink volume
8
volume adaptive
8
adaptive layer
8
layer thickness
8
thickness selective
8
selective multi-pass
8

Similar Publications

The study of the neural circuitry underlying complex mammalian decision-making, particularly cognitive flexibility, is critical for understanding psychiatric disorders. To test cognitive flexibility, as well as potentially other decision-making paradigms involving multimodal sensory perception, we developed FlexRig, an open-source, modular behavioral platform for use in head-fixed mice. FlexRig enables the administration of tasks relying upon olfactory, somatosensory, and/or auditory cues and employing left and right licking as a behavior readout and reward delivery mechanism.

View Article and Find Full Text PDF

High-Security Data Encryption Enabled by DNA Multi-Strand Solid-Phase Hybridization and Displacement in Inkjet-Printed Microarrays.

ACS Appl Mater Interfaces

January 2025

Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.

Multicolor fluorescent encryption systems that respond to specific stimuli have drawn widespread attention to data storage and encryption due to their low cost and facile data access. However, existing encryption systems are limited by encryption materials, restricting their encryption depth. This study uses DNA molecules as encryption materials that offer exceptional specificity and encryption depth within sequences.

View Article and Find Full Text PDF

Metal powders are crucial precursors for manufacturing surfaces through thermal spraying, cold spraying, and 3D printing methods. However, surface oxidation of these precursors poses a challenge to the coherence of the metallic materials during manufacturing processes. Herein, we introduce a method for surface modification of copper powder with N-heterocyclic carbenes (NHCs) using mechanochemistry to mitigate surface oxidation.

View Article and Find Full Text PDF

Nanotechnology and 3D bioprinted scaffolds are revolutionizing the field of wound healing and skin regeneration. By facilitating proper cellular movement and providing a customizable structure that replicates the extracellular matrix, such technologies not only expedite the healing process but also ensure the seamless integration of new skin layers, enhancing tissue repair and promoting overall cell growth. This study centres on the creation and assessment of a nanostructured lipid carrier containing curcumin (CNLC), which is integrated into a 3D bioprinted PLA scaffold system.

View Article and Find Full Text PDF

Facile Access to Highly Efficient 3D Printing Using Robust Self-Healing CDs/Polymer Hybrids.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China.

3D printing efficiency, as a key indicator of additive manufacturing technology, directly affects its competitiveness in rapid prototyping, small batch production, and even large-scale industrial applications. Compared with traditional manufacturing methods, the high efficiency of 3D printing is often considered a bottleneck, hindering its application across various fields. Herein, a versatile and efficient strategy is proposed, namely, the dimensional reduction printing (DRP) process, to break the obstacle of high efficiency of 3D printing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!